Cargando…

Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework

SIMPLE SUMMARY: Radiogenomics is a relatively new advancement in the understanding of the biology and behaviour of cancer in response to conventional treatments. One of the most terrible types of cancer, brain cancer, must be targeted in light of the current advancements in therapies. Even though se...

Descripción completa

Detalles Bibliográficos
Autores principales: Jena, Biswajit, Saxena, Sanjay, Nayak, Gopal Krishna, Balestrieri, Antonella, Gupta, Neha, Khanna, Narinder N., Laird, John R., Kalra, Manudeep K., Fouda, Mostafa M., Saba, Luca, Suri, Jasjit S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406706/
https://www.ncbi.nlm.nih.gov/pubmed/36011048
http://dx.doi.org/10.3390/cancers14164052
_version_ 1784774186576642048
author Jena, Biswajit
Saxena, Sanjay
Nayak, Gopal Krishna
Balestrieri, Antonella
Gupta, Neha
Khanna, Narinder N.
Laird, John R.
Kalra, Manudeep K.
Fouda, Mostafa M.
Saba, Luca
Suri, Jasjit S.
author_facet Jena, Biswajit
Saxena, Sanjay
Nayak, Gopal Krishna
Balestrieri, Antonella
Gupta, Neha
Khanna, Narinder N.
Laird, John R.
Kalra, Manudeep K.
Fouda, Mostafa M.
Saba, Luca
Suri, Jasjit S.
author_sort Jena, Biswajit
collection PubMed
description SIMPLE SUMMARY: Radiogenomics is a relatively new advancement in the understanding of the biology and behaviour of cancer in response to conventional treatments. One of the most terrible types of cancer, brain cancer, must be targeted in light of the current advancements in therapies. Even though several recent studies on brain cancer have shown promising outcomes when employing the radiogenomics concept, a cutting-edge review of research has been required. In this research review, we provide a 360-degree aspect of brain tumor diagnosis and prognosis employing the new era technology of radiogenomics. The review provides information to the reader about the various aspects that should be considered as accomplishments, opportunities, and limitations in the current therapeutic procedures. ABSTRACT: Brain tumor characterization (BTC) is the process of knowing the underlying cause of brain tumors and their characteristics through various approaches such as tumor segmentation, classification, detection, and risk analysis. The substantial brain tumor characterization includes the identification of the molecular signature of various useful genomes whose alteration causes the brain tumor. The radiomics approach uses the radiological image for disease characterization by extracting quantitative radiomics features in the artificial intelligence (AI) environment. However, when considering a higher level of disease characteristics such as genetic information and mutation status, the combined study of “radiomics and genomics” has been considered under the umbrella of “radiogenomics”. Furthermore, AI in a radiogenomics’ environment offers benefits/advantages such as the finalized outcome of personalized treatment and individualized medicine. The proposed study summarizes the brain tumor’s characterization in the prospect of an emerging field of research, i.e., radiomics and radiogenomics in an AI environment, with the help of statistical observation and risk-of-bias (RoB) analysis. The PRISMA search approach was used to find 121 relevant studies for the proposed review using IEEE, Google Scholar, PubMed, MDPI, and Scopus. Our findings indicate that both radiomics and radiogenomics have been successfully applied aggressively to several oncology applications with numerous advantages. Furthermore, under the AI paradigm, both the conventional and deep radiomics features have made an impact on the favorable outcomes of the radiogenomics approach of BTC. Furthermore, risk-of-bias (RoB) analysis offers a better understanding of the architectures with stronger benefits of AI by providing the bias involved in them.
format Online
Article
Text
id pubmed-9406706
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94067062022-08-26 Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework Jena, Biswajit Saxena, Sanjay Nayak, Gopal Krishna Balestrieri, Antonella Gupta, Neha Khanna, Narinder N. Laird, John R. Kalra, Manudeep K. Fouda, Mostafa M. Saba, Luca Suri, Jasjit S. Cancers (Basel) Systematic Review SIMPLE SUMMARY: Radiogenomics is a relatively new advancement in the understanding of the biology and behaviour of cancer in response to conventional treatments. One of the most terrible types of cancer, brain cancer, must be targeted in light of the current advancements in therapies. Even though several recent studies on brain cancer have shown promising outcomes when employing the radiogenomics concept, a cutting-edge review of research has been required. In this research review, we provide a 360-degree aspect of brain tumor diagnosis and prognosis employing the new era technology of radiogenomics. The review provides information to the reader about the various aspects that should be considered as accomplishments, opportunities, and limitations in the current therapeutic procedures. ABSTRACT: Brain tumor characterization (BTC) is the process of knowing the underlying cause of brain tumors and their characteristics through various approaches such as tumor segmentation, classification, detection, and risk analysis. The substantial brain tumor characterization includes the identification of the molecular signature of various useful genomes whose alteration causes the brain tumor. The radiomics approach uses the radiological image for disease characterization by extracting quantitative radiomics features in the artificial intelligence (AI) environment. However, when considering a higher level of disease characteristics such as genetic information and mutation status, the combined study of “radiomics and genomics” has been considered under the umbrella of “radiogenomics”. Furthermore, AI in a radiogenomics’ environment offers benefits/advantages such as the finalized outcome of personalized treatment and individualized medicine. The proposed study summarizes the brain tumor’s characterization in the prospect of an emerging field of research, i.e., radiomics and radiogenomics in an AI environment, with the help of statistical observation and risk-of-bias (RoB) analysis. The PRISMA search approach was used to find 121 relevant studies for the proposed review using IEEE, Google Scholar, PubMed, MDPI, and Scopus. Our findings indicate that both radiomics and radiogenomics have been successfully applied aggressively to several oncology applications with numerous advantages. Furthermore, under the AI paradigm, both the conventional and deep radiomics features have made an impact on the favorable outcomes of the radiogenomics approach of BTC. Furthermore, risk-of-bias (RoB) analysis offers a better understanding of the architectures with stronger benefits of AI by providing the bias involved in them. MDPI 2022-08-22 /pmc/articles/PMC9406706/ /pubmed/36011048 http://dx.doi.org/10.3390/cancers14164052 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Systematic Review
Jena, Biswajit
Saxena, Sanjay
Nayak, Gopal Krishna
Balestrieri, Antonella
Gupta, Neha
Khanna, Narinder N.
Laird, John R.
Kalra, Manudeep K.
Fouda, Mostafa M.
Saba, Luca
Suri, Jasjit S.
Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework
title Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework
title_full Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework
title_fullStr Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework
title_full_unstemmed Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework
title_short Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework
title_sort brain tumor characterization using radiogenomics in artificial intelligence framework
topic Systematic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406706/
https://www.ncbi.nlm.nih.gov/pubmed/36011048
http://dx.doi.org/10.3390/cancers14164052
work_keys_str_mv AT jenabiswajit braintumorcharacterizationusingradiogenomicsinartificialintelligenceframework
AT saxenasanjay braintumorcharacterizationusingradiogenomicsinartificialintelligenceframework
AT nayakgopalkrishna braintumorcharacterizationusingradiogenomicsinartificialintelligenceframework
AT balestrieriantonella braintumorcharacterizationusingradiogenomicsinartificialintelligenceframework
AT guptaneha braintumorcharacterizationusingradiogenomicsinartificialintelligenceframework
AT khannanarindern braintumorcharacterizationusingradiogenomicsinartificialintelligenceframework
AT lairdjohnr braintumorcharacterizationusingradiogenomicsinartificialintelligenceframework
AT kalramanudeepk braintumorcharacterizationusingradiogenomicsinartificialintelligenceframework
AT foudamostafam braintumorcharacterizationusingradiogenomicsinartificialintelligenceframework
AT sabaluca braintumorcharacterizationusingradiogenomicsinartificialintelligenceframework
AT surijasjits braintumorcharacterizationusingradiogenomicsinartificialintelligenceframework