Cargando…
Small Bowel Detection for Wireless Capsule Endoscopy Using Convolutional Neural Networks with Temporal Filtering
By automatically classifying the stomach, small bowel, and colon, the reading time of the wireless capsule endoscopy (WCE) can be reduced. In addition, it is an essential first preprocessing step to localize the small bowel in order to apply automated small bowel lesion detection algorithms based on...
Autores principales: | Son, Geonhui, Eo, Taejoon, An, Jiwoong, Oh, Dong Jun, Shin, Yejee, Rha, Hyenogseop, Kim, You Jin, Lim, Yun Jeong, Hwang, Dosik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406835/ https://www.ncbi.nlm.nih.gov/pubmed/36010210 http://dx.doi.org/10.3390/diagnostics12081858 |
Ejemplares similares
-
Clinical impact of wireless capsule endoscopy for small bowel investigation (Review)
por: Ionescu, Alin Gabriel, et al.
Publicado: (2022) -
Application of Convolutional Neural Networks for Automated Ulcer Detection in Wireless Capsule Endoscopy Images
por: Alaskar, Haya, et al.
Publicado: (2019) -
Challenges and Future of Wireless Capsule Endoscopy
por: Saurin, Jean-Christophe, et al.
Publicado: (2016) -
Deep Convolutional Neural Network for Ulcer Recognition in Wireless Capsule Endoscopy: Experimental Feasibility and Optimization
por: Wang, Sen, et al.
Publicado: (2019) -
Convolution neural network for the diagnosis of wireless capsule endoscopy: a systematic review and meta-analysis
por: Qin, Kaiwen, et al.
Publicado: (2021)