Cargando…
Resistance of Human Liver Mesenchymal Stem Cells to FAS-Induced Cell Death
Mesenchymal stem cells (MSCs) have a pronounced therapeutic potential in various pathological conditions. Though therapeutic effects of MSC transplantation have been studied for a long time, the underlying mechanisms are still not clear. It has been shown that transplanted MSCs are rapidly eliminate...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406952/ https://www.ncbi.nlm.nih.gov/pubmed/36005132 http://dx.doi.org/10.3390/cimb44080236 |
_version_ | 1784774247043825664 |
---|---|
author | Kholodenko, Irina V. Gisina, Alisa M. Manukyan, Garik V. Majouga, Alexander G. Svirshchevskaya, Elena V. Kholodenko, Roman V. Yarygin, Konstantin N. |
author_facet | Kholodenko, Irina V. Gisina, Alisa M. Manukyan, Garik V. Majouga, Alexander G. Svirshchevskaya, Elena V. Kholodenko, Roman V. Yarygin, Konstantin N. |
author_sort | Kholodenko, Irina V. |
collection | PubMed |
description | Mesenchymal stem cells (MSCs) have a pronounced therapeutic potential in various pathological conditions. Though therapeutic effects of MSC transplantation have been studied for a long time, the underlying mechanisms are still not clear. It has been shown that transplanted MSCs are rapidly eliminated, presumably by apoptosis. As the mechanisms of MSC apoptosis are not fully understood, in the present work we analyzed MSC sensitivity to Fas-induced apoptosis using MSCs isolated from the biopsies of liver fibrosis patients (L-MSCs). The level of cell death was analyzed by flow cytometry in the propidium iodide test. The luminescent ATP assay was used to measure cellular ATP levels; and the mitochondrial membrane potential was assessed using the potential-dependent dye JC-1. We found that human L-MSCs were resistant to Fas-induced cell death over a wide range of FasL and anti-Fas mAb concentrations. At the same time, intrinsic death signal inducers CoCl(2) and staurosporine caused apoptosis of L-MSCs in a dose-dependent manner. Despite the absence of Fas-induced cell death treatment of L-MSCs with low concentrations of FasL or anti-Fas mAb resulted in a cellular ATP level decrease, while high concentrations of the inducers caused a decline of the mitochondrial membrane potential. Pre-incubation of L-MSCs with the pro-inflammatory cytokine TNF-α did not promote L-MSC cell death. Our data indicate that human L-MSCs have increased resistance to receptor-mediated cell death even under inflammatory conditions. |
format | Online Article Text |
id | pubmed-9406952 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94069522022-08-26 Resistance of Human Liver Mesenchymal Stem Cells to FAS-Induced Cell Death Kholodenko, Irina V. Gisina, Alisa M. Manukyan, Garik V. Majouga, Alexander G. Svirshchevskaya, Elena V. Kholodenko, Roman V. Yarygin, Konstantin N. Curr Issues Mol Biol Article Mesenchymal stem cells (MSCs) have a pronounced therapeutic potential in various pathological conditions. Though therapeutic effects of MSC transplantation have been studied for a long time, the underlying mechanisms are still not clear. It has been shown that transplanted MSCs are rapidly eliminated, presumably by apoptosis. As the mechanisms of MSC apoptosis are not fully understood, in the present work we analyzed MSC sensitivity to Fas-induced apoptosis using MSCs isolated from the biopsies of liver fibrosis patients (L-MSCs). The level of cell death was analyzed by flow cytometry in the propidium iodide test. The luminescent ATP assay was used to measure cellular ATP levels; and the mitochondrial membrane potential was assessed using the potential-dependent dye JC-1. We found that human L-MSCs were resistant to Fas-induced cell death over a wide range of FasL and anti-Fas mAb concentrations. At the same time, intrinsic death signal inducers CoCl(2) and staurosporine caused apoptosis of L-MSCs in a dose-dependent manner. Despite the absence of Fas-induced cell death treatment of L-MSCs with low concentrations of FasL or anti-Fas mAb resulted in a cellular ATP level decrease, while high concentrations of the inducers caused a decline of the mitochondrial membrane potential. Pre-incubation of L-MSCs with the pro-inflammatory cytokine TNF-α did not promote L-MSC cell death. Our data indicate that human L-MSCs have increased resistance to receptor-mediated cell death even under inflammatory conditions. MDPI 2022-07-30 /pmc/articles/PMC9406952/ /pubmed/36005132 http://dx.doi.org/10.3390/cimb44080236 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kholodenko, Irina V. Gisina, Alisa M. Manukyan, Garik V. Majouga, Alexander G. Svirshchevskaya, Elena V. Kholodenko, Roman V. Yarygin, Konstantin N. Resistance of Human Liver Mesenchymal Stem Cells to FAS-Induced Cell Death |
title | Resistance of Human Liver Mesenchymal Stem Cells to FAS-Induced Cell Death |
title_full | Resistance of Human Liver Mesenchymal Stem Cells to FAS-Induced Cell Death |
title_fullStr | Resistance of Human Liver Mesenchymal Stem Cells to FAS-Induced Cell Death |
title_full_unstemmed | Resistance of Human Liver Mesenchymal Stem Cells to FAS-Induced Cell Death |
title_short | Resistance of Human Liver Mesenchymal Stem Cells to FAS-Induced Cell Death |
title_sort | resistance of human liver mesenchymal stem cells to fas-induced cell death |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406952/ https://www.ncbi.nlm.nih.gov/pubmed/36005132 http://dx.doi.org/10.3390/cimb44080236 |
work_keys_str_mv | AT kholodenkoirinav resistanceofhumanlivermesenchymalstemcellstofasinducedcelldeath AT gisinaalisam resistanceofhumanlivermesenchymalstemcellstofasinducedcelldeath AT manukyangarikv resistanceofhumanlivermesenchymalstemcellstofasinducedcelldeath AT majougaalexanderg resistanceofhumanlivermesenchymalstemcellstofasinducedcelldeath AT svirshchevskayaelenav resistanceofhumanlivermesenchymalstemcellstofasinducedcelldeath AT kholodenkoromanv resistanceofhumanlivermesenchymalstemcellstofasinducedcelldeath AT yaryginkonstantinn resistanceofhumanlivermesenchymalstemcellstofasinducedcelldeath |