Cargando…
Detection and Characterization of Gastric Cancer Using Cascade Deep Learning Model in Endoscopic Images
Endoscopy is widely applied in the examination of gastric cancer. However, extensive knowledge and experience are required, owing to the need to examine the lesion while manipulating the endoscope. Various diagnostic support techniques have been reported for this examination. In our previous study,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406996/ https://www.ncbi.nlm.nih.gov/pubmed/36010346 http://dx.doi.org/10.3390/diagnostics12081996 |
_version_ | 1784774258008784896 |
---|---|
author | Teramoto, Atsushi Shibata, Tomoyuki Yamada, Hyuga Hirooka, Yoshiki Saito, Kuniaki Fujita, Hiroshi |
author_facet | Teramoto, Atsushi Shibata, Tomoyuki Yamada, Hyuga Hirooka, Yoshiki Saito, Kuniaki Fujita, Hiroshi |
author_sort | Teramoto, Atsushi |
collection | PubMed |
description | Endoscopy is widely applied in the examination of gastric cancer. However, extensive knowledge and experience are required, owing to the need to examine the lesion while manipulating the endoscope. Various diagnostic support techniques have been reported for this examination. In our previous study, segmentation of invasive areas of gastric cancer was performed directly from endoscopic images and the detection sensitivity per case was 0.98. This method has challenges of false positives and computational costs because segmentation was applied to all healthy images that were captured during the examination. In this study, we propose a cascaded deep learning model to perform categorization of endoscopic images and identification of the invasive region to solve the above challenges. Endoscopic images are first classified as normal, showing early gastric cancer and showing advanced gastric cancer using a convolutional neural network. Segmentation on the extent of gastric cancer invasion is performed for the images classified as showing cancer using two separate U-Net models. In an experiment, 1208 endoscopic images collected from healthy subjects, 533 images collected from patients with early stage gastric cancer, and 637 images from patients with advanced gastric cancer were used for evaluation. The sensitivity and specificity of the proposed approach in the detection of gastric cancer via image classification were 97.0% and 99.4%, respectively. Furthermore, both detection sensitivity and specificity reached 100% in a case-based evaluation. The extent of invasion was also identified at an acceptable level, suggesting that the proposed method may be considered useful for the classification of endoscopic images and identification of the extent of cancer invasion. |
format | Online Article Text |
id | pubmed-9406996 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94069962022-08-26 Detection and Characterization of Gastric Cancer Using Cascade Deep Learning Model in Endoscopic Images Teramoto, Atsushi Shibata, Tomoyuki Yamada, Hyuga Hirooka, Yoshiki Saito, Kuniaki Fujita, Hiroshi Diagnostics (Basel) Article Endoscopy is widely applied in the examination of gastric cancer. However, extensive knowledge and experience are required, owing to the need to examine the lesion while manipulating the endoscope. Various diagnostic support techniques have been reported for this examination. In our previous study, segmentation of invasive areas of gastric cancer was performed directly from endoscopic images and the detection sensitivity per case was 0.98. This method has challenges of false positives and computational costs because segmentation was applied to all healthy images that were captured during the examination. In this study, we propose a cascaded deep learning model to perform categorization of endoscopic images and identification of the invasive region to solve the above challenges. Endoscopic images are first classified as normal, showing early gastric cancer and showing advanced gastric cancer using a convolutional neural network. Segmentation on the extent of gastric cancer invasion is performed for the images classified as showing cancer using two separate U-Net models. In an experiment, 1208 endoscopic images collected from healthy subjects, 533 images collected from patients with early stage gastric cancer, and 637 images from patients with advanced gastric cancer were used for evaluation. The sensitivity and specificity of the proposed approach in the detection of gastric cancer via image classification were 97.0% and 99.4%, respectively. Furthermore, both detection sensitivity and specificity reached 100% in a case-based evaluation. The extent of invasion was also identified at an acceptable level, suggesting that the proposed method may be considered useful for the classification of endoscopic images and identification of the extent of cancer invasion. MDPI 2022-08-18 /pmc/articles/PMC9406996/ /pubmed/36010346 http://dx.doi.org/10.3390/diagnostics12081996 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Teramoto, Atsushi Shibata, Tomoyuki Yamada, Hyuga Hirooka, Yoshiki Saito, Kuniaki Fujita, Hiroshi Detection and Characterization of Gastric Cancer Using Cascade Deep Learning Model in Endoscopic Images |
title | Detection and Characterization of Gastric Cancer Using Cascade Deep Learning Model in Endoscopic Images |
title_full | Detection and Characterization of Gastric Cancer Using Cascade Deep Learning Model in Endoscopic Images |
title_fullStr | Detection and Characterization of Gastric Cancer Using Cascade Deep Learning Model in Endoscopic Images |
title_full_unstemmed | Detection and Characterization of Gastric Cancer Using Cascade Deep Learning Model in Endoscopic Images |
title_short | Detection and Characterization of Gastric Cancer Using Cascade Deep Learning Model in Endoscopic Images |
title_sort | detection and characterization of gastric cancer using cascade deep learning model in endoscopic images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406996/ https://www.ncbi.nlm.nih.gov/pubmed/36010346 http://dx.doi.org/10.3390/diagnostics12081996 |
work_keys_str_mv | AT teramotoatsushi detectionandcharacterizationofgastriccancerusingcascadedeeplearningmodelinendoscopicimages AT shibatatomoyuki detectionandcharacterizationofgastriccancerusingcascadedeeplearningmodelinendoscopicimages AT yamadahyuga detectionandcharacterizationofgastriccancerusingcascadedeeplearningmodelinendoscopicimages AT hirookayoshiki detectionandcharacterizationofgastriccancerusingcascadedeeplearningmodelinendoscopicimages AT saitokuniaki detectionandcharacterizationofgastriccancerusingcascadedeeplearningmodelinendoscopicimages AT fujitahiroshi detectionandcharacterizationofgastriccancerusingcascadedeeplearningmodelinendoscopicimages |