Cargando…
Radiologist-Trained and -Tested (R2.2.4) Deep Learning Models for Identifying Anatomical Landmarks in Chest CT
(1) Background: Optimal anatomic coverage is important for radiation-dose optimization. We trained and tested (R2.2.4) two (R3-2) deep learning (DL) algorithms on a machine vision tool library platform (Cognex Vision Pro Deep Learning software) to recognize anatomic landmarks and classify chest CT a...
Autores principales: | Kaviani, Parisa, Bizzo, Bernardo C., Digumarthy, Subba R., Dasegowda, Giridhar, Karout, Lina, Hillis, James, Neumark, Nir, Kalra, Mannudeep K., Dreyer, Keith J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407000/ https://www.ncbi.nlm.nih.gov/pubmed/36010194 http://dx.doi.org/10.3390/diagnostics12081844 |
Ejemplares similares
-
Auto-Detection of Motion Artifacts on CT Pulmonary Angiograms with a Physician-Trained AI Algorithm
por: Dasegowda, Giridhar, et al.
Publicado: (2023) -
Frequency of Missed Findings on Chest Radiographs (CXRs) in an International, Multicenter Study: Application of AI to Reduce Missed Findings
por: Kaviani, Parisa, et al.
Publicado: (2022) -
Performance of a Chest Radiography AI Algorithm for Detection of Missed or Mislabeled Findings: A Multicenter Study
por: Kaviani, Parisa, et al.
Publicado: (2022) -
Suboptimal Chest Radiography and Artificial Intelligence: The Problem and the Solution
por: Dasegowda, Giridhar, et al.
Publicado: (2023) -
CT Radiomics, Radiologists, and Clinical Information in Predicting Outcome of Patients with COVID-19 Pneumonia
por: Homayounieh, Fatemeh, et al.
Publicado: (2020)