Cargando…
Machine-Learning Rationalization and Prediction of Solid-State Synthesis Conditions
[Image: see text] There currently exist no quantitative methods to determine the appropriate conditions for solid-state synthesis. This not only hinders the experimental realization of novel materials but also complicates the interpretation and understanding of solid-state reaction mechanisms. Here,...
Autores principales: | Huo, Haoyan, Bartel, Christopher J., He, Tanjin, Trewartha, Amalie, Dunn, Alexander, Ouyang, Bin, Jain, Anubhav, Ceder, Gerbrand |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407029/ https://www.ncbi.nlm.nih.gov/pubmed/36032555 http://dx.doi.org/10.1021/acs.chemmater.2c01293 |
Ejemplares similares
-
Text-mined dataset of gold nanoparticle synthesis procedures, morphologies, and size entities
por: Cruse, Kevin, et al.
Publicado: (2022) -
Opportunities and challenges of text mining in aterials research
por: Kononova, Olga, et al.
Publicado: (2021) -
Precursor recommendation for inorganic synthesis by machine learning materials similarity from scientific literature
por: He, Tanjin, et al.
Publicado: (2023) -
Quantifying the advantage of domain-specific pre-training on named entity recognition tasks in materials science
por: Trewartha, Amalie, et al.
Publicado: (2022) -
COVIDScholar: An automated COVID-19 research aggregation and analysis platform
por: Dagdelen, John, et al.
Publicado: (2023)