Cargando…
Progressively Discriminative Transfer Network for Cross-Corpus Speech Emotion Recognition
Cross-corpus speech emotion recognition (SER) is a challenging task, and its difficulty lies in the mismatch between the feature distributions of the training (source domain) and testing (target domain) data, leading to the performance degradation when the model deals with new domain data. Previous...
Autores principales: | Lu, Cheng, Tang, Chuangao, Zhang, Jiacheng, Zong, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407047/ https://www.ncbi.nlm.nih.gov/pubmed/36010710 http://dx.doi.org/10.3390/e24081046 |
Ejemplares similares
-
Progressive distribution adapted neural networks for cross-corpus speech emotion recognition
por: Zong, Yuan, et al.
Publicado: (2022) -
A Survey of Deep Learning-Based Multimodal Emotion Recognition: Speech, Text, and Face
por: Lian, Hailun, et al.
Publicado: (2023) -
An Urdu speech corpus for emotion recognition
por: Asghar, Awais, et al.
Publicado: (2022) -
Adapting Multiple Distributions for Bridging Emotions from Different Speech Corpora
por: Zong, Yuan, et al.
Publicado: (2022) -
Cross-Corpus Speech Emotion Recognition Based on Transfer Learning and Multi-Loss Dynamic Adjustment
por: Tao, Huawei, et al.
Publicado: (2022)