Cargando…
A Spatial–Temporal Causal Convolution Network Framework for Accurate and Fine-Grained PM(2.5) Concentration Prediction
Accurate and fine-grained prediction of PM(2.5) concentration is of great significance for air quality control and human physical and mental health. Traditional approaches, such as time series, recurrent neural networks (RNNs) or graph convolutional networks (GCNs), cannot effectively integrate spat...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407057/ https://www.ncbi.nlm.nih.gov/pubmed/36010788 http://dx.doi.org/10.3390/e24081125 |