Cargando…
A Spatial–Temporal Causal Convolution Network Framework for Accurate and Fine-Grained PM(2.5) Concentration Prediction
Accurate and fine-grained prediction of PM(2.5) concentration is of great significance for air quality control and human physical and mental health. Traditional approaches, such as time series, recurrent neural networks (RNNs) or graph convolutional networks (GCNs), cannot effectively integrate spat...
Autores principales: | Lin, Shaofu, Zhao, Junjie, Li, Jianqiang, Liu, Xiliang, Zhang, Yumin, Wang, Shaohua, Mei, Qiang, Chen, Zhuodong, Gao, Yuyao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407057/ https://www.ncbi.nlm.nih.gov/pubmed/36010788 http://dx.doi.org/10.3390/e24081125 |
Ejemplares similares
-
Convolutional Neural Networks enable efficient, accurate and fine-grained segmentation of plant species and communities from high-resolution UAV imagery
por: Kattenborn, Teja, et al.
Publicado: (2019) -
Fine-grained classification based on multi-scale pyramid convolution networks
por: Wang, Gaihua, et al.
Publicado: (2021) -
Spatial-temporal patterns of ambient fine particulate matter (PM(2.5)) and black carbon (BC) pollution in Accra
por: Alli, Abosede S, et al.
Publicado: (2021) -
Preparation of a PM(2.5)-like reference material in sufficient quantities for accurate monitoring of anions and cations in fine atmospheric dust
por: Charoud-Got, Jean, et al.
Publicado: (2017) -
Impact of long-term temporal trends in fine particulate matter (PM(2.5)) on associations of annual PM(2.5) exposure and mortality: An analysis of over 20 million Medicare beneficiaries
por: Eum, Ki-Do, et al.
Publicado: (2018)