Cargando…
Efficient Privacy-Preserving K-Means Clustering from Secret-Sharing-Based Secure Three-Party Computation
Privacy-preserving machine learning has become an important study at present due to privacy policies. However, the efficiency gap between the plain-text algorithm and its privacy-preserving version still exists. In this paper, we focus on designing a novel secret-sharing-based K-means clustering alg...
Autores principales: | Wei, Weiming, Tang, Chunming, Chen, Yucheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407146/ https://www.ncbi.nlm.nih.gov/pubmed/36010809 http://dx.doi.org/10.3390/e24081145 |
Ejemplares similares
-
Round-Efficient Secure Inference Based on Masked Secret Sharing for Quantized Neural Network
por: Wei, Weiming, et al.
Publicado: (2023) -
Two-Party Privacy-Preserving Set Intersection with FHE
por: Cai, Yunlu, et al.
Publicado: (2020) -
Privacy-preserving logistic regression with secret sharing
por: Ghavamipour, Ali Reza, et al.
Publicado: (2022) -
Mainzelliste SecureEpiLinker (MainSEL): privacy-preserving record linkage using secure multi-party computation
por: Stammler, Sebastian, et al.
Publicado: (2020) -
Privacy-preserving breast cancer recurrence prediction based on homomorphic encryption and secure two party computation
por: Son, Yongha, et al.
Publicado: (2021)