Cargando…
Combine Harvester Bearing Fault-Diagnosis Method Based on SDAE-RCmvMSE
In the fault monitoring of rolling bearings, there is always loud noise, leading to poor signal stationariness. How to accurately and efficiently identify the fault type of rolling bearings is a challenge. Based on multivariate multiscale sample entropy (mvMSE), this paper introduces the refined com...
Autores principales: | Yang, Guangyou, Cheng, Yuan, Xi, Chenbo, Liu, Lang, Gan, Xiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407150/ https://www.ncbi.nlm.nih.gov/pubmed/36010803 http://dx.doi.org/10.3390/e24081139 |
Ejemplares similares
-
An Intelligent Fault Diagnosis Method for Reciprocating Compressors Based on LMD and SDAE
por: Liu, Yang, et al.
Publicado: (2019) -
Fault Diagnosis Method for Rolling Bearings Based on Composite Multiscale Fluctuation Dispersion Entropy
por: Gan, Xiong, et al.
Publicado: (2019) -
MSE assembly procedure
por: Christensen, R L
Publicado: (2005) -
Corn Harvester Bearing Fault Diagnosis Based on ABC-VMD and Optimized EfficientNet
por: Liu, Zhiyuan, et al.
Publicado: (2023) -
Combining SDAE Network with Improved DTW Algorithm for Similarity Measure of Ultra-Weak FBG Vibration Responses in Underground Structures
por: Li, Sheng, et al.
Publicado: (2020)