Cargando…

Probabilistic Hierarchical Quantum Information Splitting of Arbitrary Multi-Qubit States

By utilizing the non-maximally entangled four-qubit cluster states as the quantum channel, we first propose a hierarchical quantum information splitting scheme of arbitrary three-qubit states among three agents with a certain probability. Then we generalize the scheme to arbitrary multi-qubit states...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Jie, Ma, Song-Ya, Li, Qi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407153/
https://www.ncbi.nlm.nih.gov/pubmed/36010741
http://dx.doi.org/10.3390/e24081077
Descripción
Sumario:By utilizing the non-maximally entangled four-qubit cluster states as the quantum channel, we first propose a hierarchical quantum information splitting scheme of arbitrary three-qubit states among three agents with a certain probability. Then we generalize the scheme to arbitrary multi-qubit states. Hierarchy is reflected on the different abilities of agents to restore the target state. The high-grade agent only needs the help of one low-grade agent, while the low-grade agent requires all the other agents’ assistance. The designated receiver performs positive operator-valued measurement (POVM) which is elaborately constructed with the aid of Hadamard matrix. It is worth mentioning that a general expression of recovery operation is derived to disclose the relationship with measurement outcomes. Moreover, the scheme is extended to multiple agents by means of the symmetry of cluster states.