Cargando…
Physicochemical and Microstructural Analyses of Pepsin-Soluble Collagens Derived from Lizardfish (Saurida tumbil Bloch, 1795) Skin, Bone and Scales
Reducing food waste is critical for sustainability. In the case of fish processing, more than sixty percent of by-products are generated as waste. Lizardfish (Saurida tumbil Bloch, 1795) is an economically important species for surimi production. To address waste disposal and maximize income, an eff...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407154/ https://www.ncbi.nlm.nih.gov/pubmed/36005071 http://dx.doi.org/10.3390/gels8080471 |
_version_ | 1784774295148298240 |
---|---|
author | Jaziri, Abdul Aziz Shapawi, Rossita Mokhtar, Ruzaidi Azli Mohd Noordin, Wan Norhana Md. Huda, Nurul |
author_facet | Jaziri, Abdul Aziz Shapawi, Rossita Mokhtar, Ruzaidi Azli Mohd Noordin, Wan Norhana Md. Huda, Nurul |
author_sort | Jaziri, Abdul Aziz |
collection | PubMed |
description | Reducing food waste is critical for sustainability. In the case of fish processing, more than sixty percent of by-products are generated as waste. Lizardfish (Saurida tumbil Bloch, 1795) is an economically important species for surimi production. To address waste disposal and maximize income, an effective utilization of fish by-products is essential. This study aims to isolate and characterize pepsin-soluble collagens from the skin, bone and scales of lizardfish. Significant differences (p < 0.05) in the yields of collagen were noted with the highest yield recorded in pepsin-soluble skin collagen (PSSC) (3.50 ± 0.11%), followed by pepsin-soluble bone collagen (PSBC) (3.26 ± 0.10%) and pepsin-soluble scales collagen (PSCC) (0.60 ± 0.65%). Through SDS–polyacrylamide gel electrophoresis, the presence of two alpha chains were noted and classified as type I. From Fourier transform infrared spectroscopy (FTIR) analysis, the triple-helix structure of the collagen was maintained. The X-ray diffraction and UV visible spectra characteristics of the lizardfish collagens in this study are similar to the previously reported fish collagens. In terms of thermostability, PSSC (T(max) = 43.89 °C) had higher thermostability in comparison to PSBC (T(max) = 31.75 °C) and PSCC (T(max) = 30.54 °C). All pepsin-soluble collagens were highly soluble (>70%) in acidic conditions (particularly at pH 4.0) and at low sodium chloride concentrations (0–30 g/L). Microstructural analysis depicted that all extracted collagens were multi-layered, irregular, dense, sheet-like films linked by random coiled filaments. Overall, pepsin-soluble collagens from lizardfish skin, bone and scales could serve as potential alternative sources of collagens. |
format | Online Article Text |
id | pubmed-9407154 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94071542022-08-26 Physicochemical and Microstructural Analyses of Pepsin-Soluble Collagens Derived from Lizardfish (Saurida tumbil Bloch, 1795) Skin, Bone and Scales Jaziri, Abdul Aziz Shapawi, Rossita Mokhtar, Ruzaidi Azli Mohd Noordin, Wan Norhana Md. Huda, Nurul Gels Article Reducing food waste is critical for sustainability. In the case of fish processing, more than sixty percent of by-products are generated as waste. Lizardfish (Saurida tumbil Bloch, 1795) is an economically important species for surimi production. To address waste disposal and maximize income, an effective utilization of fish by-products is essential. This study aims to isolate and characterize pepsin-soluble collagens from the skin, bone and scales of lizardfish. Significant differences (p < 0.05) in the yields of collagen were noted with the highest yield recorded in pepsin-soluble skin collagen (PSSC) (3.50 ± 0.11%), followed by pepsin-soluble bone collagen (PSBC) (3.26 ± 0.10%) and pepsin-soluble scales collagen (PSCC) (0.60 ± 0.65%). Through SDS–polyacrylamide gel electrophoresis, the presence of two alpha chains were noted and classified as type I. From Fourier transform infrared spectroscopy (FTIR) analysis, the triple-helix structure of the collagen was maintained. The X-ray diffraction and UV visible spectra characteristics of the lizardfish collagens in this study are similar to the previously reported fish collagens. In terms of thermostability, PSSC (T(max) = 43.89 °C) had higher thermostability in comparison to PSBC (T(max) = 31.75 °C) and PSCC (T(max) = 30.54 °C). All pepsin-soluble collagens were highly soluble (>70%) in acidic conditions (particularly at pH 4.0) and at low sodium chloride concentrations (0–30 g/L). Microstructural analysis depicted that all extracted collagens were multi-layered, irregular, dense, sheet-like films linked by random coiled filaments. Overall, pepsin-soluble collagens from lizardfish skin, bone and scales could serve as potential alternative sources of collagens. MDPI 2022-07-27 /pmc/articles/PMC9407154/ /pubmed/36005071 http://dx.doi.org/10.3390/gels8080471 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Jaziri, Abdul Aziz Shapawi, Rossita Mokhtar, Ruzaidi Azli Mohd Noordin, Wan Norhana Md. Huda, Nurul Physicochemical and Microstructural Analyses of Pepsin-Soluble Collagens Derived from Lizardfish (Saurida tumbil Bloch, 1795) Skin, Bone and Scales |
title | Physicochemical and Microstructural Analyses of Pepsin-Soluble Collagens Derived from Lizardfish (Saurida tumbil Bloch, 1795) Skin, Bone and Scales |
title_full | Physicochemical and Microstructural Analyses of Pepsin-Soluble Collagens Derived from Lizardfish (Saurida tumbil Bloch, 1795) Skin, Bone and Scales |
title_fullStr | Physicochemical and Microstructural Analyses of Pepsin-Soluble Collagens Derived from Lizardfish (Saurida tumbil Bloch, 1795) Skin, Bone and Scales |
title_full_unstemmed | Physicochemical and Microstructural Analyses of Pepsin-Soluble Collagens Derived from Lizardfish (Saurida tumbil Bloch, 1795) Skin, Bone and Scales |
title_short | Physicochemical and Microstructural Analyses of Pepsin-Soluble Collagens Derived from Lizardfish (Saurida tumbil Bloch, 1795) Skin, Bone and Scales |
title_sort | physicochemical and microstructural analyses of pepsin-soluble collagens derived from lizardfish (saurida tumbil bloch, 1795) skin, bone and scales |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407154/ https://www.ncbi.nlm.nih.gov/pubmed/36005071 http://dx.doi.org/10.3390/gels8080471 |
work_keys_str_mv | AT jaziriabdulaziz physicochemicalandmicrostructuralanalysesofpepsinsolublecollagensderivedfromlizardfishsauridatumbilbloch1795skinboneandscales AT shapawirossita physicochemicalandmicrostructuralanalysesofpepsinsolublecollagensderivedfromlizardfishsauridatumbilbloch1795skinboneandscales AT mokhtarruzaidiazlimohd physicochemicalandmicrostructuralanalysesofpepsinsolublecollagensderivedfromlizardfishsauridatumbilbloch1795skinboneandscales AT noordinwannorhanamd physicochemicalandmicrostructuralanalysesofpepsinsolublecollagensderivedfromlizardfishsauridatumbilbloch1795skinboneandscales AT hudanurul physicochemicalandmicrostructuralanalysesofpepsinsolublecollagensderivedfromlizardfishsauridatumbilbloch1795skinboneandscales |