Cargando…
Predicting Multiple Sclerosis Outcomes During the COVID-19 Stay-at-home Period: Observational Study Using Passively Sensed Behaviors and Digital Phenotyping
BACKGROUND: The COVID-19 pandemic has broad negative impact on the physical and mental health of people with chronic neurological disorders such as multiple sclerosis (MS). OBJECTIVE: We presented a machine learning approach leveraging passive sensor data from smartphones and fitness trackers of peo...
Autores principales: | Chikersal, Prerna, Venkatesh, Shruthi, Masown, Karman, Walker, Elizabeth, Quraishi, Danyal, Dey, Anind, Goel, Mayank, Xia, Zongqi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407162/ https://www.ncbi.nlm.nih.gov/pubmed/35849686 http://dx.doi.org/10.2196/38495 |
Ejemplares similares
-
Identifying Behavioral Phenotypes of Loneliness and Social Isolation with Passive Sensing: Statistical Analysis, Data Mining and Machine Learning of Smartphone and Fitbit Data
por: Doryab, Afsaneh, et al.
Publicado: (2019) -
Understanding practices and needs of researchers in human state modeling by passive mobile sensing
por: Xu, Xuhai, et al.
Publicado: (2021) -
Objective Measurement of Hyperactivity Using Mobile Sensing and Machine Learning: Pilot Study
por: Lindhiem, Oliver, et al.
Publicado: (2022) -
Estimation of Symptom Severity During Chemotherapy From Passively Sensed Data: Exploratory Study
por: Low, Carissa A, et al.
Publicado: (2017) -
Speaking out of turn: How video conferencing reduces vocal synchrony and collective intelligence
por: Tomprou, Maria, et al.
Publicado: (2021)