Cargando…
High Resolution Treatment Effects Estimation: Uncovering Effect Heterogeneities with the Modified Causal Forest
There is great demand for inferring causal effect heterogeneity and for open-source statistical software, which is readily available for practitioners. The mcf package is an open-source Python package that implements Modified Causal Forest (mcf), a causal machine learner. We replicate three well-kno...
Autores principales: | Bodory, Hugo, Busshoff, Hannah, Lechner, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407165/ https://www.ncbi.nlm.nih.gov/pubmed/36010703 http://dx.doi.org/10.3390/e24081039 |
Ejemplares similares
-
Estimating causal effects of internet interventions in the context of nonadherence
por: Hesser, Hugo
Publicado: (2020) -
Comparison of causal forest and regression-based approaches to evaluate treatment effect heterogeneity: an application for type 2 diabetes precision medicine
por: Venkatasubramaniam, Ashwini, et al.
Publicado: (2023) -
Stan and BART for Causal Inference: Estimating Heterogeneous Treatment Effects Using the Power of Stan and the Flexibility of Machine Learning
por: Dorie, Vincent, et al.
Publicado: (2022) -
Estimating heterogeneous treatment effect by balancing heterogeneity and fitness
por: Zhang, Weijia, et al.
Publicado: (2018) -
High‐resolution forest canopy height estimation in an African blue carbon ecosystem
por: Lagomasino, David, et al.
Publicado: (2015)