Cargando…
Physics-Informed Neural Networks for Solving Coupled Stokes–Darcy Equation
In this paper, a grid-free deep learning method based on a physics-informed neural network is proposed for solving coupled Stokes–Darcy equations with Bever–Joseph–Saffman interface conditions. This method has the advantage of avoiding grid generation and can greatly reduce the amount of computation...
Autores principales: | Pu, Ruilong, Feng, Xinlong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407191/ https://www.ncbi.nlm.nih.gov/pubmed/36010770 http://dx.doi.org/10.3390/e24081106 |
Ejemplares similares
-
Stokes-Darcy equations: analytic and numerical analysis
por: Wilbrandt, Ulrich
Publicado: (2019) -
Dynamic Weight Strategy of Physics-Informed Neural Networks for the 2D Navier–Stokes Equations
por: Li, Shirong, et al.
Publicado: (2022) -
Solving the Incompressible Surface Stokes Equation by Standard Velocity-Correction Projection Methods
por: Zhao, Yanzi, et al.
Publicado: (2022) -
Null space algorithm and spanning trees in solving Darcy's equation
por: Arioli, M, et al.
Publicado: (2003) -
A network programming approach in solving Darcy's equations by mixed finite-element methods
por: Arioli, M, et al.
Publicado: (2001)