Cargando…
Multivariate Time Series Imputation: An Approach Based on Dictionary Learning
The problem addressed by dictionary learning (DL) is the representation of data as a sparse linear combination of columns of a matrix called dictionary. Both the dictionary and the sparse representations are learned from the data. We show how DL can be employed in the imputation of multivariate time...
Autores principales: | Zheng, Xiaomeng, Dumitrescu, Bogdan, Liu, Jiamou, Giurcăneanu, Ciprian Doru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407201/ https://www.ncbi.nlm.nih.gov/pubmed/36010721 http://dx.doi.org/10.3390/e24081057 |
Ejemplares similares
-
Maximum Entropy Expectation-Maximization Algorithm for Fitting Latent-Variable Graphical Models to Multivariate Time Series
por: Maanan, Saïd, et al.
Publicado: (2018) -
ImputeGAN: Generative Adversarial Network for Multivariate Time Series Imputation
por: Qin, Rui, et al.
Publicado: (2023) -
Dictionary learning algorithms and applications
por: Dumitrescu, Bogdan, et al.
Publicado: (2018) -
CGCNImp: a causal graph convolutional network for multivariate time series imputation
por: Liu, Caizheng, et al.
Publicado: (2022) -
Attention-Based Sequence-to-Sequence Model for Time Series Imputation
por: Li, Yurui, et al.
Publicado: (2022)