Cargando…
Link Prediction in Complex Networks Using Recursive Feature Elimination and Stacking Ensemble Learning
Link prediction is an important task in the field of network analysis and modeling, and predicts missing links in current networks and new links in future networks. In order to improve the performance of link prediction, we integrate global, local, and quasi-local topological information of networks...
Autores principales: | Wang, Tao, Jiao, Mengyu, Wang, Xiaoxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407261/ https://www.ncbi.nlm.nih.gov/pubmed/36010793 http://dx.doi.org/10.3390/e24081124 |
Ejemplares similares
-
WERFE: A Gene Selection Algorithm Based on Recursive Feature Elimination and Ensemble Strategy
por: Chen, Qi, et al.
Publicado: (2020) -
dRFEtools: dynamic recursive feature elimination for omics
por: Benjamin, Kynon J M, et al.
Publicado: (2023) -
A Stacking Ensemble Learning Framework for Genomic Prediction
por: Liang, Mang, et al.
Publicado: (2021) -
Transfer-recursive-ensemble learning for multi-day COVID-19 prediction in India using recurrent neural networks
por: Chakraborty, Debasrita, et al.
Publicado: (2023) -
StackBRAF: A Large-Scale Stacking Ensemble Learning
for BRAF Affinity Prediction
por: Syahid, Nur Fadhilah, et al.
Publicado: (2023)