Cargando…
Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation
Classical dendritic cells (cDCs) are essential for immune responses and differentiate from hematopoietic stem cells via intermediate progenitors, such as monocyte−DC progenitors (MDPs) and common DC progenitors (CDPs). Upon infection, cDCs are activated and rapidly express host defense-related genes...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407307/ https://www.ncbi.nlm.nih.gov/pubmed/35969760 http://dx.doi.org/10.1073/pnas.2207009119 |
_version_ | 1784774332437757952 |
---|---|
author | Kurotaki, Daisuke Kikuchi, Kenta Cui, Kairong Kawase, Wataru Saeki, Keita Fukumoto, Junpei Nishiyama, Akira Nagamune, Kisaburo Zhao, Keji Ozato, Keiko Rocha, Pedro P. Tamura, Tomohiko |
author_facet | Kurotaki, Daisuke Kikuchi, Kenta Cui, Kairong Kawase, Wataru Saeki, Keita Fukumoto, Junpei Nishiyama, Akira Nagamune, Kisaburo Zhao, Keji Ozato, Keiko Rocha, Pedro P. Tamura, Tomohiko |
author_sort | Kurotaki, Daisuke |
collection | PubMed |
description | Classical dendritic cells (cDCs) are essential for immune responses and differentiate from hematopoietic stem cells via intermediate progenitors, such as monocyte−DC progenitors (MDPs) and common DC progenitors (CDPs). Upon infection, cDCs are activated and rapidly express host defense-related genes, such as those encoding cytokines and chemokines. Chromatin structures, including nuclear compartments and topologically associating domains (TADs), have been implicated in gene regulation. However, the extent and dynamics of their reorganization during cDC development and activation remain unknown. In this study, we comprehensively determined higher-order chromatin structures by Hi-C in DC progenitors and cDC subpopulations. During cDC differentiation, chromatin activation was initially induced at the MDP stage. Subsequently, a shift from inactive to active nuclear compartments occurred at the cDC gene loci in CDPs, which was followed by increased intra-TAD interactions and loop formation. Mechanistically, the transcription factor IRF8, indispensable for cDC differentiation, mediated chromatin activation and changes into the active compartments in DC progenitors, thereby possibly leading to cDC-specific gene induction. Using an infection model, we found that the chromatin structures of host defense-related gene loci were preestablished in unstimulated cDCs, indicating that the formation of higher-order chromatin structures prior to infection may contribute to the rapid responses to pathogens. Overall, these results suggest that chromatin structure reorganization is closely related to the establishment of cDC-specific gene expression and immune functions. This study advances the fundamental understanding of chromatin reorganization in cDC differentiation and activation. |
format | Online Article Text |
id | pubmed-9407307 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-94073072023-02-15 Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation Kurotaki, Daisuke Kikuchi, Kenta Cui, Kairong Kawase, Wataru Saeki, Keita Fukumoto, Junpei Nishiyama, Akira Nagamune, Kisaburo Zhao, Keji Ozato, Keiko Rocha, Pedro P. Tamura, Tomohiko Proc Natl Acad Sci U S A Biological Sciences Classical dendritic cells (cDCs) are essential for immune responses and differentiate from hematopoietic stem cells via intermediate progenitors, such as monocyte−DC progenitors (MDPs) and common DC progenitors (CDPs). Upon infection, cDCs are activated and rapidly express host defense-related genes, such as those encoding cytokines and chemokines. Chromatin structures, including nuclear compartments and topologically associating domains (TADs), have been implicated in gene regulation. However, the extent and dynamics of their reorganization during cDC development and activation remain unknown. In this study, we comprehensively determined higher-order chromatin structures by Hi-C in DC progenitors and cDC subpopulations. During cDC differentiation, chromatin activation was initially induced at the MDP stage. Subsequently, a shift from inactive to active nuclear compartments occurred at the cDC gene loci in CDPs, which was followed by increased intra-TAD interactions and loop formation. Mechanistically, the transcription factor IRF8, indispensable for cDC differentiation, mediated chromatin activation and changes into the active compartments in DC progenitors, thereby possibly leading to cDC-specific gene induction. Using an infection model, we found that the chromatin structures of host defense-related gene loci were preestablished in unstimulated cDCs, indicating that the formation of higher-order chromatin structures prior to infection may contribute to the rapid responses to pathogens. Overall, these results suggest that chromatin structure reorganization is closely related to the establishment of cDC-specific gene expression and immune functions. This study advances the fundamental understanding of chromatin reorganization in cDC differentiation and activation. National Academy of Sciences 2022-08-15 2022-08-23 /pmc/articles/PMC9407307/ /pubmed/35969760 http://dx.doi.org/10.1073/pnas.2207009119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Kurotaki, Daisuke Kikuchi, Kenta Cui, Kairong Kawase, Wataru Saeki, Keita Fukumoto, Junpei Nishiyama, Akira Nagamune, Kisaburo Zhao, Keji Ozato, Keiko Rocha, Pedro P. Tamura, Tomohiko Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation |
title | Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation |
title_full | Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation |
title_fullStr | Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation |
title_full_unstemmed | Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation |
title_short | Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation |
title_sort | chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407307/ https://www.ncbi.nlm.nih.gov/pubmed/35969760 http://dx.doi.org/10.1073/pnas.2207009119 |
work_keys_str_mv | AT kurotakidaisuke chromatinstructureundergoesglobalandlocalreorganizationduringmurinedendriticcelldevelopmentandactivation AT kikuchikenta chromatinstructureundergoesglobalandlocalreorganizationduringmurinedendriticcelldevelopmentandactivation AT cuikairong chromatinstructureundergoesglobalandlocalreorganizationduringmurinedendriticcelldevelopmentandactivation AT kawasewataru chromatinstructureundergoesglobalandlocalreorganizationduringmurinedendriticcelldevelopmentandactivation AT saekikeita chromatinstructureundergoesglobalandlocalreorganizationduringmurinedendriticcelldevelopmentandactivation AT fukumotojunpei chromatinstructureundergoesglobalandlocalreorganizationduringmurinedendriticcelldevelopmentandactivation AT nishiyamaakira chromatinstructureundergoesglobalandlocalreorganizationduringmurinedendriticcelldevelopmentandactivation AT nagamunekisaburo chromatinstructureundergoesglobalandlocalreorganizationduringmurinedendriticcelldevelopmentandactivation AT zhaokeji chromatinstructureundergoesglobalandlocalreorganizationduringmurinedendriticcelldevelopmentandactivation AT ozatokeiko chromatinstructureundergoesglobalandlocalreorganizationduringmurinedendriticcelldevelopmentandactivation AT rochapedrop chromatinstructureundergoesglobalandlocalreorganizationduringmurinedendriticcelldevelopmentandactivation AT tamuratomohiko chromatinstructureundergoesglobalandlocalreorganizationduringmurinedendriticcelldevelopmentandactivation |