Cargando…
Waveform Design for Multi-Target Detection Based on Two-Stage Information Criterion
Parameter estimation accuracy and average sample number (ASN) reduction are important to improving target detection performance in sequential hypothesis tests. Multiple-input multiple-output (MIMO) radar can balance between parameter estimation accuracy and ASN reduction through waveform diversity....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407354/ https://www.ncbi.nlm.nih.gov/pubmed/36010739 http://dx.doi.org/10.3390/e24081075 |
Sumario: | Parameter estimation accuracy and average sample number (ASN) reduction are important to improving target detection performance in sequential hypothesis tests. Multiple-input multiple-output (MIMO) radar can balance between parameter estimation accuracy and ASN reduction through waveform diversity. In this study, we propose a waveform design method based on a two-stage information criterion to improve multi-target detection performance. In the first stage, the waveform is designed to estimate the target parameters based on the criterion of single-hypothesis mutual information (MI) maximization under the constraint of the signal-to-noise ratio (SNR). In the second stage, the objective function is designed based on the criterion of MI minimization and Kullback–Leibler divergence (KLD) maximization between multi-hypothesis posterior probabilities, and the waveform is chosen from the waveform library of the first-stage parameter estimation. Furthermore, an adaptive waveform design algorithm framework for multi-target detection is proposed. The simulation results reveal that the waveform design based on the two-stage information criterion can rapidly detect the target direction. In addition, the waveform design based on the criterion of dual-hypothesis MI minimization can improve the parameter estimation performance, whereas the design based on the criterion of dual-hypothesis KLD maximization can improve the target detection performance. |
---|