Cargando…

CRC-Aided Adaptive BP Decoding of PAC Codes

Although long polar codes with successive cancellation decoding can asymptotically achieve channel capacity, the performance of short blocklength polar codes is far from optimal. Recently, Arıkan proposed employing a convolutional pre-transformation before the polarization network, called polarizati...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xianwen, Jiang, Ming, Zhu, Mingyang, Liu, Kailin, Zhao, Chunming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407406/
https://www.ncbi.nlm.nih.gov/pubmed/36010834
http://dx.doi.org/10.3390/e24081170
Descripción
Sumario:Although long polar codes with successive cancellation decoding can asymptotically achieve channel capacity, the performance of short blocklength polar codes is far from optimal. Recently, Arıkan proposed employing a convolutional pre-transformation before the polarization network, called polarization-adjusted convolutional (PAC) codes. In this paper, we focus on improving the performance of short PAC codes concatenated with a cyclic redundancy check (CRC) outer code, CRC-PAC codes, since error detection capability is essential in practical applications, such as the polar coding scheme for the control channel. We propose an enhanced adaptive belief propagation (ABP) decoding algorithm with the assistance of CRC bits for PAC codes. We also derive joint parity-check matrices of CRC-PAC codes suitable for iterative BP decoding. The proposed CRC-aided ABP (CA-ABP) decoding can effectively improve error performance when partial CRC bits are used in the decoding. Meanwhile, the error detection ability can still be guaranteed by the remaining CRC bits and adaptive decoding parameters. Moreover, compared with the conventional CRC-aided list (CA-List) decoding, our proposed scheme can significantly reduce computational complexity, to achieve a better trade-off between the performance and complexity for short PAC codes.