Cargando…
Stochastic Control for Bayesian Neural Network Training
In this paper, we propose to leverage the Bayesian uncertainty information encoded in parameter distributions to inform the learning procedure for Bayesian models. We derive a first principle stochastic differential equation for the training dynamics of the mean and uncertainty parameter in the vari...
Autores principales: | Winkler, Ludwig, Ojeda, César, Opper, Manfred |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407447/ https://www.ncbi.nlm.nih.gov/pubmed/36010761 http://dx.doi.org/10.3390/e24081097 |
Ejemplares similares
-
A Score-Based Approach for Training Schrödinger Bridges for Data Modelling
por: Winkler, Ludwig, et al.
Publicado: (2023) -
Variational Bayesian Inference for Nonlinear Hawkes Process with Gaussian Process Self-Effects
por: Malem-Shinitski, Noa, et al.
Publicado: (2022) -
Bayesian Reasoning with Trained Neural Networks
por: Knollmüller, Jakob, et al.
Publicado: (2021) -
Parameter estimation and inference for stochastic reaction-diffusion systems: application to morphogenesis in D. melanogaster
por: Dewar, Michael A, et al.
Publicado: (2010) -
Stability and synchronization control of stochastic neural networks
por: Zhou, Wuneng, et al.
Publicado: (2016)