Cargando…

Facile Synthesis of Sustainable Tannin/Sodium Alginate Composite Hydrogel Beads for Efficient Removal of Methylene Blue

To meet the requirement of sustainable development, bio-based adsorbents were developed for the removal of dye contaminant. To improve the adsorption capacity of pure sodium alginate (SA) adsorbent for the removal of methylene blue (MB), aromatic bio-based tannin (Tan) was incorporated through the c...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Jie, Li, Zhenzhen, Wang, Ziwen, Chen, Tao, Hu, Guowen, Zhao, Yuan, Han, Xiaobing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407457/
https://www.ncbi.nlm.nih.gov/pubmed/36005087
http://dx.doi.org/10.3390/gels8080486
Descripción
Sumario:To meet the requirement of sustainable development, bio-based adsorbents were developed for the removal of dye contaminant. To improve the adsorption capacity of pure sodium alginate (SA) adsorbent for the removal of methylene blue (MB), aromatic bio-based tannin (Tan) was incorporated through the cross-linking with calcium ion. The obtained Tan/SA composite hydrogel beads were characterized with SEM, FTIR and TG, demonstrating that millimeter-sized beads were obtained through calcium cross-linking with enhanced thermal stability. The maximum capacity (247.2 mg/g) at optimal condition (pH = 12, T = 45 °C) was obtained for the 40%Tan/SA adsorbents, with a removal efficiency of 82.4%. This can be ascribed to the electrostatic attraction between SA and MB, as well as the formation of π–π stacking between Tan and MB. The adsorption process for MB is endothermic, and chemical adsorption, the removal efficiency was exceeded 90% after five cycles.