Cargando…
Learnability of the Boolean Innerproduct in Deep Neural Networks
In this paper, we study the learnability of the Boolean inner product by a systematic simulation study. The family of the Boolean inner product function is known to be representable by neural networks of threshold neurons of depth 3 with only [Formula: see text] units (n the input dimension)—whereas...
Autores principales: | Erdal, Mehmet, Schwenker, Friedhelm |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407482/ https://www.ncbi.nlm.nih.gov/pubmed/36010780 http://dx.doi.org/10.3390/e24081117 |
Ejemplares similares
-
Deep Learnability: Using Neural Networks to Quantify Language Similarity and Learnability
por: Cohen, Clara, et al.
Publicado: (2020) -
Odd order group actions and Witt classification of innerproducts
por: Alexander, John P, et al.
Publicado: (1977) -
Network architectures supporting learnability
por: Zurn, Perry, et al.
Publicado: (2020) -
Learnable Topological Features for Phylogenetic Inference via Graph Neural Networks
por: Zhang, Cheng
Publicado: (2023) -
Learnable latent embeddings for joint behavioural and neural analysis
por: Schneider, Steffen, et al.
Publicado: (2023)