Cargando…

On the Eigenvalues of the Fermionic Angular Eigenfunctions in the Kerr Metric

In view of a result recently published in the context of the deformation theory of linear Hamiltonian systems, we reconsider the eigenvalue problem associated with the angular equation arising after the separation of the Dirac equation in the Kerr metric, and we show how a quasilinear first order PD...

Descripción completa

Detalles Bibliográficos
Autores principales: Batic, Davide, Karim, Suzan Hamad Abdul, Nowakowski, Marek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407483/
https://www.ncbi.nlm.nih.gov/pubmed/36010746
http://dx.doi.org/10.3390/e24081083
_version_ 1784774375053983744
author Batic, Davide
Karim, Suzan Hamad Abdul
Nowakowski, Marek
author_facet Batic, Davide
Karim, Suzan Hamad Abdul
Nowakowski, Marek
author_sort Batic, Davide
collection PubMed
description In view of a result recently published in the context of the deformation theory of linear Hamiltonian systems, we reconsider the eigenvalue problem associated with the angular equation arising after the separation of the Dirac equation in the Kerr metric, and we show how a quasilinear first order PDE for the angular eigenvalues can be derived efficiently. We also prove that it is not possible to obtain an ordinary differential equation for the eigenvalues when the role of the independent variable is played by the particle energy or the black hole mass. Finally, we construct new perturbative expansions for the eigenvalues in the Kerr case and obtain an asymptotic formula for the eigenvalues in the case of a Kerr naked singularity.
format Online
Article
Text
id pubmed-9407483
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94074832022-08-26 On the Eigenvalues of the Fermionic Angular Eigenfunctions in the Kerr Metric Batic, Davide Karim, Suzan Hamad Abdul Nowakowski, Marek Entropy (Basel) Article In view of a result recently published in the context of the deformation theory of linear Hamiltonian systems, we reconsider the eigenvalue problem associated with the angular equation arising after the separation of the Dirac equation in the Kerr metric, and we show how a quasilinear first order PDE for the angular eigenvalues can be derived efficiently. We also prove that it is not possible to obtain an ordinary differential equation for the eigenvalues when the role of the independent variable is played by the particle energy or the black hole mass. Finally, we construct new perturbative expansions for the eigenvalues in the Kerr case and obtain an asymptotic formula for the eigenvalues in the case of a Kerr naked singularity. MDPI 2022-08-05 /pmc/articles/PMC9407483/ /pubmed/36010746 http://dx.doi.org/10.3390/e24081083 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Batic, Davide
Karim, Suzan Hamad Abdul
Nowakowski, Marek
On the Eigenvalues of the Fermionic Angular Eigenfunctions in the Kerr Metric
title On the Eigenvalues of the Fermionic Angular Eigenfunctions in the Kerr Metric
title_full On the Eigenvalues of the Fermionic Angular Eigenfunctions in the Kerr Metric
title_fullStr On the Eigenvalues of the Fermionic Angular Eigenfunctions in the Kerr Metric
title_full_unstemmed On the Eigenvalues of the Fermionic Angular Eigenfunctions in the Kerr Metric
title_short On the Eigenvalues of the Fermionic Angular Eigenfunctions in the Kerr Metric
title_sort on the eigenvalues of the fermionic angular eigenfunctions in the kerr metric
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407483/
https://www.ncbi.nlm.nih.gov/pubmed/36010746
http://dx.doi.org/10.3390/e24081083
work_keys_str_mv AT baticdavide ontheeigenvaluesofthefermionicangulareigenfunctionsinthekerrmetric
AT karimsuzanhamadabdul ontheeigenvaluesofthefermionicangulareigenfunctionsinthekerrmetric
AT nowakowskimarek ontheeigenvaluesofthefermionicangulareigenfunctionsinthekerrmetric