Cargando…

Application of Ethyl Cellulose and Ethyl Cellulose + Polyethylene Glycol for the Development of Polymer-Based Formulations using Spray-Drying Technology for Retinoic Acid Encapsulation

Ethyl cellulose (EC)-based microparticles, with and without the incorporation of polyethylene glycol (PEG) as a second encapsulating agent, were prepared using the spray-drying process for the encapsulation of retinoic acid (RA). The production of a suitable controlled delivery system for this retin...

Descripción completa

Detalles Bibliográficos
Autores principales: Gonçalves, Antónia, Rocha, Fernando, Estevinho, Berta N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407561/
https://www.ncbi.nlm.nih.gov/pubmed/36010533
http://dx.doi.org/10.3390/foods11162533
Descripción
Sumario:Ethyl cellulose (EC)-based microparticles, with and without the incorporation of polyethylene glycol (PEG) as a second encapsulating agent, were prepared using the spray-drying process for the encapsulation of retinoic acid (RA). The production of a suitable controlled delivery system for this retinoid will promote its antitumor efficiency against acute promyelocytic leukemia (APL) due to the possibility of increasing the bioavailability of RA. Product yield ranged from 12 to 28% in all the microparticle formulations, including unloaded microparticles and RA-loaded microparticles. Microparticles with a mean diameter between 0.090 ± 0.002 and 0.54 ± 0.02 µm (number size distribution) and with an irregular form and rough surface were obtained. Furthermore, regarding RA-loaded microparticles, both polymer-based formulations exhibited an encapsulation efficiency of around 100%. A rapid and complete RA release was reached in 40 min from EC− and EC + PEG-based microparticles.