Cargando…
Entropy-Based Discovery of Summary Causal Graphs in Time Series
This study addresses the problem of learning a summary causal graph on time series with potentially different sampling rates. To do so, we first propose a new causal temporal mutual information measure for time series. We then show how this measure relates to an entropy reduction principle that can...
Autores principales: | Assaad, Charles K., Devijver, Emilie, Gaussier, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407574/ https://www.ncbi.nlm.nih.gov/pubmed/36010820 http://dx.doi.org/10.3390/e24081156 |
Ejemplares similares
-
A Conditional Mutual Information Estimator for Mixed Data and an Associated Conditional Independence Test
por: Zan, Lei, et al.
Publicado: (2022) -
Normalized Multivariate Time Series Causality Analysis and Causal Graph Reconstruction
por: Liang, X. San
Publicado: (2021) -
Causal Inference in Time Series in Terms of Rényi Transfer Entropy
por: Jizba, Petr, et al.
Publicado: (2022) -
Entropy-based dynamic graph embedding for anomaly detection on multiple climate time series
por: Li, Gen, et al.
Publicado: (2021) -
Causal graph extraction from news: a comparative study of time-series causality learning techniques
por: Maisonnave, Mariano, et al.
Publicado: (2022)