Cargando…
Nonlinear Statistical Analysis of Normal and Pathological Infant Cry Signals in Cepstrum Domain by Multifractal Wavelet Leaders
Multifractal behavior in the cepstrum representation of healthy and unhealthy infant cry signals is examined by means of wavelet leaders and compared using the Student t-test. The empirical results show that both expiration and inspiration signals exhibit clear evidence of multifractal properties un...
Autores principales: | Lahmiri, Salim, Tadj, Chakib, Gargour, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407617/ https://www.ncbi.nlm.nih.gov/pubmed/36010830 http://dx.doi.org/10.3390/e24081166 |
Ejemplares similares
-
Expiratory and Inspiratory Cries Detection Using Different Signals' Decomposition Techniques
por: Abou-Abbas, Lina, et al.
Publicado: (2017) -
Cry-based infant pathology classification using GMMs
por: Farsaie Alaie, Hesam, et al.
Publicado: (2016) -
Infant Cry Signal Diagnostic System Using Deep Learning and Fused Features
por: Zayed, Yara, et al.
Publicado: (2023) -
The effect of the COVID-19 pandemic on multifractals of price returns and trading volume variations of cryptocurrencies
por: Lahmiri, Salim
Publicado: (2023) -
Identification of Diseases in Newborns Using Advanced Acoustic Features of Cry Signals
por: Kheddache, Yasmina, et al.
Publicado: (2019)