Cargando…
MIGAN: Mutual-Interaction Graph Attention Network for Collaborative Filtering
Many web platforms now include recommender systems. Network representation learning has been a successful approach for building these efficient recommender systems. However, learning the mutual influence of nodes in the network is challenging. Indeed, it carries collaborative signals accounting for...
Autores principales: | Drif, Ahlem, Cherifi, Hocine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407632/ https://www.ncbi.nlm.nih.gov/pubmed/36010748 http://dx.doi.org/10.3390/e24081084 |
Ejemplares similares
-
GATCF: Graph Attention Collaborative Filtering for Reliable Blockchain Services Selection in BaaS
por: Zeng, Yuxiang, et al.
Publicado: (2023) -
MLNGCF: circRNA–disease associations prediction with multilayer attention neural graph-based collaborative filtering
por: Wu, Qunzhuo, et al.
Publicado: (2023) -
Efficient Graph Collaborative Filtering via Contrastive Learning
por: Pan, Zhiqiang, et al.
Publicado: (2021) -
Characterizing the interactions between classical and community-aware centrality measures in complex networks
por: Rajeh, Stephany, et al.
Publicado: (2021) -
Anti-inflammatory effects of Radix Gentianae Macrophyllae (Qinjiao), Rhizoma Coptidis (Huanglian) and Citri Unshiu Pericarpium (Wenzhou migan) in animal models
por: Kim, Kyoung Soo, et al.
Publicado: (2008)