Cargando…
Impact of Green Innovation Efficiency on Carbon Peak: Carbon Neutralization under Environmental Governance Constraints
Under environmental governance constraints, in order to explore the quantitative contribution of green innovation efficiency to carbon peak and carbon neutralization at the urban level, this paper uses the unexpected Super-SBM model to measure the green innovation efficiency of each prefecture-level...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407693/ https://www.ncbi.nlm.nih.gov/pubmed/36011882 http://dx.doi.org/10.3390/ijerph191610245 |
Sumario: | Under environmental governance constraints, in order to explore the quantitative contribution of green innovation efficiency to carbon peak and carbon neutralization at the urban level, this paper uses the unexpected Super-SBM model to measure the green innovation efficiency of each prefecture-level city based on the panel data of 40 prefecture-level cities in the Yangtze River Delta from 2010 to 2019. Furthermore, the panel fixed effect model is constructed, and the two-stage least squares estimation method is used for empirical research. It is found that green innovation efficiency can significantly reduce carbon emissions in the Yangtze River Delta, promote carbon emissions in the Yangtze River Delta to reach an early peak, and achieve the long-term goal of carbon neutrality as soon as possible. This conclusion is still stable after solving the endogenous problem and the influence of outliers. The results of regional heterogeneity analysis show that green innovation efficiency has remarkable effects on carbon emission reduction in Anhui and Zhejiang Provinces, and the emission reduction effect in Zhejiang Province is greater than that in Anhui Province. In addition, there exists obvious heterogeneity between different quantiles for the impact of green innovation efficiency on carbon emissions, showing an “inverted U” shape, and its intensity in the context of medium carbon emissions is greater than that of low carbon and high carbon emissions. |
---|