Cargando…
A Comparison of Three Machine Learning Methods for Multivariate Genomic Prediction Using the Sparse Kernels Method (SKM) Library
Genomic selection (GS) changed the way plant breeders select genotypes. GS takes advantage of phenotypic and genotypic information to training a statistical machine learning model, which is used to predict phenotypic (or breeding) values of new lines for which only genotypic information is available...
Autores principales: | Montesinos-López, Osval A., Montesinos-López, Abelardo, Cano-Paez, Bernabe, Hernández-Suárez, Carlos Moisés, Santana-Mancilla, Pedro C., Crossa, José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407886/ https://www.ncbi.nlm.nih.gov/pubmed/36011405 http://dx.doi.org/10.3390/genes13081494 |
Ejemplares similares
-
Statistical Machine-Learning Methods for Genomic Prediction Using the SKM Library
por: Montesinos López, Osval A., et al.
Publicado: (2023) -
A General-Purpose Machine Learning R Library for Sparse Kernels Methods With an Application for Genome-Based Prediction
por: Montesinos López, Osval Antonio, et al.
Publicado: (2022) -
A Multi-Trait Gaussian Kernel Genomic Prediction Model under Three Tunning Strategies
por: Kismiantini,, et al.
Publicado: (2022) -
A Comparison between Three Tuning Strategies for Gaussian Kernels in the Context of Univariate Genomic Prediction
por: Montesinos-López, Osval A., et al.
Publicado: (2022) -
A guide for kernel generalized regression methods for genomic-enabled prediction
por: Montesinos-López, Abelardo, et al.
Publicado: (2021)