Cargando…
Assessing and Validating the Ability of Machine Learning to Handle Unrefined Particle Air Pollution Mobile Monitoring Data Randomly, Spatially, and Spatiotemporally
Many epidemiological studies have evaluated the accuracy of machine learning models in predicting levels of particulate number (PN) and black carbon (BC) pollutant concentrations. However, few studies have investigated the ability of machine learning to predict the pollutant concentration with using...
Autores principales: | Alazmi, Asmaa, Rakha, Hesham |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9408314/ https://www.ncbi.nlm.nih.gov/pubmed/36011733 http://dx.doi.org/10.3390/ijerph191610098 |
Ejemplares similares
-
Qualitative Characterization of Unrefined Durum Wheat Air-Classified Fractions
por: Cammerata, Alessandro, et al.
Publicado: (2021) -
INFLUENCE OF UNREFINED SORGHUM OR MAIZE ON SERUM LIPIDS
por: Suhasini, G. E., et al.
Publicado: (1991) -
Impact of Refined and Unrefined Sugar and Starch on the Microbiota in Dental Biofilm
por: Chhaliyil, Pranav, et al.
Publicado: (2022) -
Effect of processing technology and sugarcane varieties on the quality properties of unrefined non-centrifugal sugar
por: Vera-Gutiérrez, Tatiana, et al.
Publicado: (2019) -
Transplant-associated thrombotic microangiopathy: theoretical considerations and a practical approach to an unrefined diagnosis
por: Young, Joanna A., et al.
Publicado: (2021)