Cargando…

A Study of Sr Sorption Behavior in Claystone from a Candidate High-Level Radioactive Waste Geological Disposal Site under the Action of FeOOH Colloids

Colloids have a significant influence on the migration of nuclides in claystone, which is an important geological barrier. The sorption of strontium on claystone in the presence of FeOOH colloids was investigated in samples from the Suhongtu site, a candidate high-level radioactive waste disposal si...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jinsheng, Cai, Weihai, Zuo, Rui, Du, Can
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9408631/
https://www.ncbi.nlm.nih.gov/pubmed/36011607
http://dx.doi.org/10.3390/ijerph19169970
Descripción
Sumario:Colloids have a significant influence on the migration of nuclides in claystone, which is an important geological barrier. The sorption of strontium on claystone in the presence of FeOOH colloids was investigated in samples from the Suhongtu site, a candidate high-level radioactive waste disposal site in China. The effects of colloid amount, solid content, and pH were investigated by batch tests, and the sorption reaction mechanism was analyzed by kinetic modeling and microscopic characterization techniques. The results indicate that the sorption of Sr by claystone increased with the solids content, and the claystone had a stronger Sr sorption capacity under alkaline conditions. The Sr sorption kinetics were best described by the pseudo-first-order and pseudo-second-order models, which revealed that the progress is affected by physical diffusion and chemical sorption. Furthermore, the microscopic characterization results demonstrate that cation exchange reactions and surface complex reactions are the main sorption mechanisms for Sr sorption on claystone. Ca and Mg plasmas in claystone minerals can have cation replacement reactions with Sr, and functional groups such as -OH and [CO(3)](2−) can have complexation reactions with Sr to adsorb Sr on the surface of the claystone. Additionally, the presence of the FeOOH colloid inhibited the sorption effect of claystone slightly. The FeOOH colloid could occupy sorption sites on the claystone surface, which reduces the activity of the functional groups and inhibits the sorption of Sr on claystone.