Cargando…

Aberrant Retinal Pigment Epithelial Cells Derived from Induced Pluripotent Stem Cells of a Retinitis Pigmentosa Patient with the PRPF6 Mutation

Pre-mRNA processing factors (PRPFs) are vital components of the spliceosome and are involved in the physiological process necessary for pre-mRNA splicing to mature mRNA. As an important member, PRPF6 mutation resulting in autosomal dominant retinitis pigmentosa (adRP) is not common. Recently, we rep...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Yuqin, Tan, Feng, Sun, Xihao, Cui, Zekai, Gu, Jianing, Mao, Shengru, Chan, Hon Fai, Tang, Shibo, Chen, Jiansu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409096/
https://www.ncbi.nlm.nih.gov/pubmed/36012314
http://dx.doi.org/10.3390/ijms23169049
Descripción
Sumario:Pre-mRNA processing factors (PRPFs) are vital components of the spliceosome and are involved in the physiological process necessary for pre-mRNA splicing to mature mRNA. As an important member, PRPF6 mutation resulting in autosomal dominant retinitis pigmentosa (adRP) is not common. Recently, we reported the establishment of an induced pluripotent stem cells (iPSCs; CSUASOi004-A) model by reprogramming the peripheral blood mononuclear cells of a PRPF6-related adRP patient, which could recapitulate a consistent disease-specific genotype. In this study, a disease model of retinal pigment epithelial (RPE) cells was generated from the iPSCs of this patient to further investigate the underlying molecular and pathological mechanisms. The results showed the irregular morphology, disorganized apical microvilli and reduced expressions of RPE-specific genes in the patient’s iPSC-derived RPE cells. In addition, RPE cells carrying the PRPF6 mutation displayed a decrease in the phagocytosis of fluorescein isothiocyanate-labeled photoreceptor outer segments and exhibited impaired cell polarity and barrier function. This study will benefit the understanding of PRPF6-related RPE cells and future cell therapy.