Cargando…
High-Depth Transcriptome Reveals Differences in Natural Haploid Ginkgo biloba L. Due to the Effect of Reduced Gene Dosage
As a representative of gymnosperms, the discovery of natural haploids of Ginkgo biloba L. has opened a new door for its research. Haploid germplasm has always been a research material of interest to researchers because of its special characteristics. However, we do not yet know the special features...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409250/ https://www.ncbi.nlm.nih.gov/pubmed/36012222 http://dx.doi.org/10.3390/ijms23168958 |
_version_ | 1784774805323513856 |
---|---|
author | Hu, Yaping Šmarda, Petr Liu, Ganping Wang, Beibei Gao, Xiaoge Guo, Qirong |
author_facet | Hu, Yaping Šmarda, Petr Liu, Ganping Wang, Beibei Gao, Xiaoge Guo, Qirong |
author_sort | Hu, Yaping |
collection | PubMed |
description | As a representative of gymnosperms, the discovery of natural haploids of Ginkgo biloba L. has opened a new door for its research. Haploid germplasm has always been a research material of interest to researchers because of its special characteristics. However, we do not yet know the special features and mechanisms of haploid ginkgo following this significant discovery. In this study, we conducted a homogenous garden experiment on haploid and diploid ginkgo to explore the differences in growth, physiology and biochemistry between the two. Additionally, a high-depth transcriptome database of both was established to reveal their transcriptional differences. The results showed that haploid ginkgo exhibited weaker growth potential, lower photosynthesis and flavonoid accumulation capacity. Although the up-regulated expression of DEGs in haploid ginkgo reached 46.7% of the total DEGs in the whole transcriptome data, the gene sets of photosynthesis metabolic, glycolysis/gluconeogenesis and flavonoid biosynthesis pathways, which were significantly related to these differences, were found to show a significant down-regulated expression trend by gene set enrichment analysis (GSEA). We further found that the major metabolic pathways in the haploid ginkgo transcriptional database were down-regulated in expression compared to the diploid. This study reveals for the first time the phenotypic, growth and physiological differences in haploid ginkgos, and demonstrates their transcriptional patterns based on high-depth transcriptomic data, laying the foundation for subsequent in-depth studies of haploid ginkgos. |
format | Online Article Text |
id | pubmed-9409250 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94092502022-08-26 High-Depth Transcriptome Reveals Differences in Natural Haploid Ginkgo biloba L. Due to the Effect of Reduced Gene Dosage Hu, Yaping Šmarda, Petr Liu, Ganping Wang, Beibei Gao, Xiaoge Guo, Qirong Int J Mol Sci Article As a representative of gymnosperms, the discovery of natural haploids of Ginkgo biloba L. has opened a new door for its research. Haploid germplasm has always been a research material of interest to researchers because of its special characteristics. However, we do not yet know the special features and mechanisms of haploid ginkgo following this significant discovery. In this study, we conducted a homogenous garden experiment on haploid and diploid ginkgo to explore the differences in growth, physiology and biochemistry between the two. Additionally, a high-depth transcriptome database of both was established to reveal their transcriptional differences. The results showed that haploid ginkgo exhibited weaker growth potential, lower photosynthesis and flavonoid accumulation capacity. Although the up-regulated expression of DEGs in haploid ginkgo reached 46.7% of the total DEGs in the whole transcriptome data, the gene sets of photosynthesis metabolic, glycolysis/gluconeogenesis and flavonoid biosynthesis pathways, which were significantly related to these differences, were found to show a significant down-regulated expression trend by gene set enrichment analysis (GSEA). We further found that the major metabolic pathways in the haploid ginkgo transcriptional database were down-regulated in expression compared to the diploid. This study reveals for the first time the phenotypic, growth and physiological differences in haploid ginkgos, and demonstrates their transcriptional patterns based on high-depth transcriptomic data, laying the foundation for subsequent in-depth studies of haploid ginkgos. MDPI 2022-08-11 /pmc/articles/PMC9409250/ /pubmed/36012222 http://dx.doi.org/10.3390/ijms23168958 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hu, Yaping Šmarda, Petr Liu, Ganping Wang, Beibei Gao, Xiaoge Guo, Qirong High-Depth Transcriptome Reveals Differences in Natural Haploid Ginkgo biloba L. Due to the Effect of Reduced Gene Dosage |
title | High-Depth Transcriptome Reveals Differences in Natural Haploid Ginkgo biloba L. Due to the Effect of Reduced Gene Dosage |
title_full | High-Depth Transcriptome Reveals Differences in Natural Haploid Ginkgo biloba L. Due to the Effect of Reduced Gene Dosage |
title_fullStr | High-Depth Transcriptome Reveals Differences in Natural Haploid Ginkgo biloba L. Due to the Effect of Reduced Gene Dosage |
title_full_unstemmed | High-Depth Transcriptome Reveals Differences in Natural Haploid Ginkgo biloba L. Due to the Effect of Reduced Gene Dosage |
title_short | High-Depth Transcriptome Reveals Differences in Natural Haploid Ginkgo biloba L. Due to the Effect of Reduced Gene Dosage |
title_sort | high-depth transcriptome reveals differences in natural haploid ginkgo biloba l. due to the effect of reduced gene dosage |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409250/ https://www.ncbi.nlm.nih.gov/pubmed/36012222 http://dx.doi.org/10.3390/ijms23168958 |
work_keys_str_mv | AT huyaping highdepthtranscriptomerevealsdifferencesinnaturalhaploidginkgobilobalduetotheeffectofreducedgenedosage AT smardapetr highdepthtranscriptomerevealsdifferencesinnaturalhaploidginkgobilobalduetotheeffectofreducedgenedosage AT liuganping highdepthtranscriptomerevealsdifferencesinnaturalhaploidginkgobilobalduetotheeffectofreducedgenedosage AT wangbeibei highdepthtranscriptomerevealsdifferencesinnaturalhaploidginkgobilobalduetotheeffectofreducedgenedosage AT gaoxiaoge highdepthtranscriptomerevealsdifferencesinnaturalhaploidginkgobilobalduetotheeffectofreducedgenedosage AT guoqirong highdepthtranscriptomerevealsdifferencesinnaturalhaploidginkgobilobalduetotheeffectofreducedgenedosage |