Cargando…

Over-Expression of an R2R3 MYB Gene, MdMYB108L, Enhances Tolerance to Salt Stress in Transgenic Plants

Plants are affected by various abiotic stresses during their growth and development. In plants, MYB transcription factors are involved in various physiological and biochemical processes, including biotic and abiotic stress responses. In this study, we functionally analyzed MdMYB108L. We examined the...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Bingyang, Liu, Heng, Dong, Kuntian, Wang, Yong, Zhang, Yuanhu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409463/
https://www.ncbi.nlm.nih.gov/pubmed/36012693
http://dx.doi.org/10.3390/ijms23169428
Descripción
Sumario:Plants are affected by various abiotic stresses during their growth and development. In plants, MYB transcription factors are involved in various physiological and biochemical processes, including biotic and abiotic stress responses. In this study, we functionally analyzed MdMYB108L. We examined the transcriptional activity of MdMYB108L under salt stress and determined that the N-terminal domain of MdMYB108L, which was significantly induced under salt stress, has transcriptional activity. MdMYB108L overexpression increased the germination rate, main root length, and the antioxidant activity of catalase and peroxidase in transgenic Arabidopsis thaliana seeds, while reducing reactive oxygen species (ROS) accumulation. MdMYB108L overexpression also increased the photosynthetic capacity of hairy root tissue (leaves) under salt stress. In addition, the MdMYB108L transcription factor bound to the MdNHX1 promoter positively regulated the transcription of the salt tolerance gene MdNHX1 in apples, improving the salt stress tolerance of transgenic plants. These findings have implications for improving the agricultural yields of apple trees under salt stress.