Cargando…

Text mining in long-term care: Exploring the usefulness of artificial intelligence in a nursing home setting

OBJECTIVES: In nursing homes, narrative data are collected to evaluate quality of care as perceived by residents or their family members. This results in a large amount of textual data. However, as the volume of data increases, it becomes beyond the capability of humans to analyze it. This study aim...

Descripción completa

Detalles Bibliográficos
Autores principales: Hacking, Coen, Verbeek, Hilde, Hamers, Jan P. H., Sion, Katya, Aarts, Sil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409502/
https://www.ncbi.nlm.nih.gov/pubmed/36006921
http://dx.doi.org/10.1371/journal.pone.0268281
_version_ 1784774866802573312
author Hacking, Coen
Verbeek, Hilde
Hamers, Jan P. H.
Sion, Katya
Aarts, Sil
author_facet Hacking, Coen
Verbeek, Hilde
Hamers, Jan P. H.
Sion, Katya
Aarts, Sil
author_sort Hacking, Coen
collection PubMed
description OBJECTIVES: In nursing homes, narrative data are collected to evaluate quality of care as perceived by residents or their family members. This results in a large amount of textual data. However, as the volume of data increases, it becomes beyond the capability of humans to analyze it. This study aims to explore the usefulness of text mining approaches regarding narrative data gathered in a nursing home setting. DESIGN: Exploratory study showing a variety of text mining approaches. SETTING AND PARTICIPANTS: Data has been collected as part of the project ‘Connecting Conversations’: assessing experienced quality of care by conducting individual interviews with residents of nursing homes (n = 39), family members (n = 37) and care professionals (n = 49). METHODS: Several pre-processing steps were applied. A variety of text mining analyses were conducted: individual word frequencies, bigram frequencies, a correlation analysis and a sentiment analysis. A survey was conducted to establish a sentiment analysis model tailored to text collected in long-term care for older adults. RESULTS: Residents, family members and care professionals uttered respectively 285, 362 and 549 words per interview. Word frequency analysis showed that words that occurred most frequently in the interviews are often positive. Despite some differences in word usage, correlation analysis displayed that similar words are used by all three groups to describe quality of care. Most interviews displayed a neutral sentiment. Care professionals expressed a more diverse sentiment compared to residents and family members. A topic clustering analysis showed a total of 12 topics including ‘relations’ and ‘care environment’. CONCLUSIONS AND IMPLICATIONS: This study demonstrates the usefulness of text mining to extend our knowledge regarding quality of care in a nursing home setting. With the rise of textual (narrative) data, text mining can lead to valuable new insights for long-term care for older adults.
format Online
Article
Text
id pubmed-9409502
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-94095022022-08-26 Text mining in long-term care: Exploring the usefulness of artificial intelligence in a nursing home setting Hacking, Coen Verbeek, Hilde Hamers, Jan P. H. Sion, Katya Aarts, Sil PLoS One Research Article OBJECTIVES: In nursing homes, narrative data are collected to evaluate quality of care as perceived by residents or their family members. This results in a large amount of textual data. However, as the volume of data increases, it becomes beyond the capability of humans to analyze it. This study aims to explore the usefulness of text mining approaches regarding narrative data gathered in a nursing home setting. DESIGN: Exploratory study showing a variety of text mining approaches. SETTING AND PARTICIPANTS: Data has been collected as part of the project ‘Connecting Conversations’: assessing experienced quality of care by conducting individual interviews with residents of nursing homes (n = 39), family members (n = 37) and care professionals (n = 49). METHODS: Several pre-processing steps were applied. A variety of text mining analyses were conducted: individual word frequencies, bigram frequencies, a correlation analysis and a sentiment analysis. A survey was conducted to establish a sentiment analysis model tailored to text collected in long-term care for older adults. RESULTS: Residents, family members and care professionals uttered respectively 285, 362 and 549 words per interview. Word frequency analysis showed that words that occurred most frequently in the interviews are often positive. Despite some differences in word usage, correlation analysis displayed that similar words are used by all three groups to describe quality of care. Most interviews displayed a neutral sentiment. Care professionals expressed a more diverse sentiment compared to residents and family members. A topic clustering analysis showed a total of 12 topics including ‘relations’ and ‘care environment’. CONCLUSIONS AND IMPLICATIONS: This study demonstrates the usefulness of text mining to extend our knowledge regarding quality of care in a nursing home setting. With the rise of textual (narrative) data, text mining can lead to valuable new insights for long-term care for older adults. Public Library of Science 2022-08-25 /pmc/articles/PMC9409502/ /pubmed/36006921 http://dx.doi.org/10.1371/journal.pone.0268281 Text en © 2022 Hacking et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Hacking, Coen
Verbeek, Hilde
Hamers, Jan P. H.
Sion, Katya
Aarts, Sil
Text mining in long-term care: Exploring the usefulness of artificial intelligence in a nursing home setting
title Text mining in long-term care: Exploring the usefulness of artificial intelligence in a nursing home setting
title_full Text mining in long-term care: Exploring the usefulness of artificial intelligence in a nursing home setting
title_fullStr Text mining in long-term care: Exploring the usefulness of artificial intelligence in a nursing home setting
title_full_unstemmed Text mining in long-term care: Exploring the usefulness of artificial intelligence in a nursing home setting
title_short Text mining in long-term care: Exploring the usefulness of artificial intelligence in a nursing home setting
title_sort text mining in long-term care: exploring the usefulness of artificial intelligence in a nursing home setting
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409502/
https://www.ncbi.nlm.nih.gov/pubmed/36006921
http://dx.doi.org/10.1371/journal.pone.0268281
work_keys_str_mv AT hackingcoen textmininginlongtermcareexploringtheusefulnessofartificialintelligenceinanursinghomesetting
AT verbeekhilde textmininginlongtermcareexploringtheusefulnessofartificialintelligenceinanursinghomesetting
AT hamersjanph textmininginlongtermcareexploringtheusefulnessofartificialintelligenceinanursinghomesetting
AT sionkatya textmininginlongtermcareexploringtheusefulnessofartificialintelligenceinanursinghomesetting
AT aartssil textmininginlongtermcareexploringtheusefulnessofartificialintelligenceinanursinghomesetting