Cargando…
Predicting technological innovation in new energy vehicles based on an improved radial basis function neural network for policy synergy
Policy synergy is necessary to promote technological innovation and sustainable industrial development. A radial basis function (RBF) neural network model with an automatic coding machine and fractional momentum was proposed for the prediction of technological innovation. Policy keywords for China’s...
Autores principales: | Hao, Ying, Guo, Mingshun, Guo, Yijing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409568/ https://www.ncbi.nlm.nih.gov/pubmed/36006989 http://dx.doi.org/10.1371/journal.pone.0271316 |
Ejemplares similares
-
Motion Planning for Autonomous Vehicle Based on Radial Basis Function Neural Network in Unstructured Environment
por: Chen, Jiajia, et al.
Publicado: (2014) -
Synergy effect of science and technology policies on innovation: Evidence from China
por: Pang, Shoulin, et al.
Publicado: (2020) -
Design of Incentive Contract for Technological Innovation of New Energy Vehicles with Asymmetric Information
por: Cai, Dong, et al.
Publicado: (2019) -
A Radial Basis Function Neural Network Approach to Predict Preschool Teachers’ Technology Acceptance Behavior
por: Rad, Dana, et al.
Publicado: (2022) -
Radial basis function neural networks with sequential learning: MRAN and its applications
por: Sundararajan, N, et al.
Publicado: (1999)