Cargando…

Macrophages in Glioblastoma Development and Therapy: A Double-Edged Sword

Glioblastoma (GBM) is one of the leading lethal tumors, featuring aggressive malignancy and poor outcome to current standard temozolomide (TMZ) or radio-based therapy. Developing immunotherapies, especially immune checkpoint inhibitors, have improved patient outcomes in other solid tumors but remain...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Mengwan, Shi, Ying, Zhu, Luyi, Chen, Luoyi, Zhao, Xinchen, Xu, Chuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409650/
https://www.ncbi.nlm.nih.gov/pubmed/36013403
http://dx.doi.org/10.3390/life12081225
Descripción
Sumario:Glioblastoma (GBM) is one of the leading lethal tumors, featuring aggressive malignancy and poor outcome to current standard temozolomide (TMZ) or radio-based therapy. Developing immunotherapies, especially immune checkpoint inhibitors, have improved patient outcomes in other solid tumors but remain fatigued in GBM patients. Emerging evidence has shown that GBM-associated macrophages (GAMs), comprising brain-resident microglia and bone marrow-derived macrophages, act critically in boosting tumor progression, altering drug resistance, and establishing an immunosuppressive environment. Based on its crucial role, evaluations of the safety and efficacy of GAM-targeted therapy are ongoing, with promising (pre)clinical evidence updated. In this review, we summarized updated literature related to GAM nature, the interplay between GAMs and GBM cells, and GAM-targeted therapeutic strategies.