Cargando…

Characteristics and Risk Factors of Myocardial Injury after Traumatic Hemorrhagic Shock

Myocardial injury increases major adverse cardiovascular events and mortality in patients with traumatic hemorrhagic shock, but its prevalence and risk factors remain unclear. This study aimed to assess the prevalence and risk factors of myocardial injury after traumatic hemorrhagic shock. This was...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Xiujuan, Guo, Fuzheng, Wang, Chu, Wang, Zhenzhou, Chang, Panpan, Xue, Haiyan, Wang, Tianbing, Zhu, Fengxue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409653/
https://www.ncbi.nlm.nih.gov/pubmed/36013038
http://dx.doi.org/10.3390/jcm11164799
_version_ 1784774903856103424
author Zhao, Xiujuan
Guo, Fuzheng
Wang, Chu
Wang, Zhenzhou
Chang, Panpan
Xue, Haiyan
Wang, Tianbing
Zhu, Fengxue
author_facet Zhao, Xiujuan
Guo, Fuzheng
Wang, Chu
Wang, Zhenzhou
Chang, Panpan
Xue, Haiyan
Wang, Tianbing
Zhu, Fengxue
author_sort Zhao, Xiujuan
collection PubMed
description Myocardial injury increases major adverse cardiovascular events and mortality in patients with traumatic hemorrhagic shock, but its prevalence and risk factors remain unclear. This study aimed to assess the prevalence and risk factors of myocardial injury after traumatic hemorrhagic shock. This was an observational, retrospective cohort study of patients with traumatic hemorrhagic shock at a tertiary university hospital from November 2012 to July 2021. Patient characteristics and clinical variables were recorded in 314 patients. The outcome was the occurrence of myocardial injury after traumatic hemorrhagic shock. Risk factors for myocardial injury were identified using logistic regression. The incidence of myocardial injury after the traumatic hemorrhagic shock was 42.4%, and 95.5% of myocardial injuries occurred within the first three days after trauma. In the multivariate analysis, the independent risk factors for myocardial injury after traumatic hemorrhagic shock included heart rate of >100 beats/min (OR [odds ratio], 3.33; 95% confidence interval [CI], 1.56–7.09; p = 0.002), hemoglobin level of <70 g/L (OR, 3.50; 95% CI, 1.15–10.60; p = 0.027), prothrombin time of >15 s (OR, 2.39; 95% CI, 1.12–5.10; p = 0.024), acute kidney injury (OR, 2.75; 95% CI, 1.27–5.93; p = 0.01), and a higher APACHE II score (OR, 1.08; 95% CI, 1.01–1.15; p = 0.018). The area under the receiver operating characteristic curve for the prediction of myocardial injury after a traumatic hemorrhagic shock was 0.67 (95% CI, 0.68–0.79) for a heart rate of >100 beats/min, 0.67 (95% CI, 0.61–0.73) for hemoglobin level of <70 g/L, 0.66 (95% CI, 0.60–0.73) for prothrombin time of >15 s, 0.70 (95% CI, 0.64–0.76) for acute kidney injury, and 0.78 (95% CI, 0.73–0.83) for APACHE II scores. The incidence rate of myocardial injury in traumatic hemorrhagic shock is high, and heart rates of >100 beats/min, hemoglobin levels of <70 g/L, prothrombin times of >15 s, AKI and higher APACHE II scores are independent risk factors for myocardial injury after traumatic hemorrhagic shock. These findings may help clinicians to identify myocardial injury after traumatic hemorrhagic shock early and initiate appropriate treatment.
format Online
Article
Text
id pubmed-9409653
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94096532022-08-26 Characteristics and Risk Factors of Myocardial Injury after Traumatic Hemorrhagic Shock Zhao, Xiujuan Guo, Fuzheng Wang, Chu Wang, Zhenzhou Chang, Panpan Xue, Haiyan Wang, Tianbing Zhu, Fengxue J Clin Med Article Myocardial injury increases major adverse cardiovascular events and mortality in patients with traumatic hemorrhagic shock, but its prevalence and risk factors remain unclear. This study aimed to assess the prevalence and risk factors of myocardial injury after traumatic hemorrhagic shock. This was an observational, retrospective cohort study of patients with traumatic hemorrhagic shock at a tertiary university hospital from November 2012 to July 2021. Patient characteristics and clinical variables were recorded in 314 patients. The outcome was the occurrence of myocardial injury after traumatic hemorrhagic shock. Risk factors for myocardial injury were identified using logistic regression. The incidence of myocardial injury after the traumatic hemorrhagic shock was 42.4%, and 95.5% of myocardial injuries occurred within the first three days after trauma. In the multivariate analysis, the independent risk factors for myocardial injury after traumatic hemorrhagic shock included heart rate of >100 beats/min (OR [odds ratio], 3.33; 95% confidence interval [CI], 1.56–7.09; p = 0.002), hemoglobin level of <70 g/L (OR, 3.50; 95% CI, 1.15–10.60; p = 0.027), prothrombin time of >15 s (OR, 2.39; 95% CI, 1.12–5.10; p = 0.024), acute kidney injury (OR, 2.75; 95% CI, 1.27–5.93; p = 0.01), and a higher APACHE II score (OR, 1.08; 95% CI, 1.01–1.15; p = 0.018). The area under the receiver operating characteristic curve for the prediction of myocardial injury after a traumatic hemorrhagic shock was 0.67 (95% CI, 0.68–0.79) for a heart rate of >100 beats/min, 0.67 (95% CI, 0.61–0.73) for hemoglobin level of <70 g/L, 0.66 (95% CI, 0.60–0.73) for prothrombin time of >15 s, 0.70 (95% CI, 0.64–0.76) for acute kidney injury, and 0.78 (95% CI, 0.73–0.83) for APACHE II scores. The incidence rate of myocardial injury in traumatic hemorrhagic shock is high, and heart rates of >100 beats/min, hemoglobin levels of <70 g/L, prothrombin times of >15 s, AKI and higher APACHE II scores are independent risk factors for myocardial injury after traumatic hemorrhagic shock. These findings may help clinicians to identify myocardial injury after traumatic hemorrhagic shock early and initiate appropriate treatment. MDPI 2022-08-17 /pmc/articles/PMC9409653/ /pubmed/36013038 http://dx.doi.org/10.3390/jcm11164799 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhao, Xiujuan
Guo, Fuzheng
Wang, Chu
Wang, Zhenzhou
Chang, Panpan
Xue, Haiyan
Wang, Tianbing
Zhu, Fengxue
Characteristics and Risk Factors of Myocardial Injury after Traumatic Hemorrhagic Shock
title Characteristics and Risk Factors of Myocardial Injury after Traumatic Hemorrhagic Shock
title_full Characteristics and Risk Factors of Myocardial Injury after Traumatic Hemorrhagic Shock
title_fullStr Characteristics and Risk Factors of Myocardial Injury after Traumatic Hemorrhagic Shock
title_full_unstemmed Characteristics and Risk Factors of Myocardial Injury after Traumatic Hemorrhagic Shock
title_short Characteristics and Risk Factors of Myocardial Injury after Traumatic Hemorrhagic Shock
title_sort characteristics and risk factors of myocardial injury after traumatic hemorrhagic shock
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409653/
https://www.ncbi.nlm.nih.gov/pubmed/36013038
http://dx.doi.org/10.3390/jcm11164799
work_keys_str_mv AT zhaoxiujuan characteristicsandriskfactorsofmyocardialinjuryaftertraumatichemorrhagicshock
AT guofuzheng characteristicsandriskfactorsofmyocardialinjuryaftertraumatichemorrhagicshock
AT wangchu characteristicsandriskfactorsofmyocardialinjuryaftertraumatichemorrhagicshock
AT wangzhenzhou characteristicsandriskfactorsofmyocardialinjuryaftertraumatichemorrhagicshock
AT changpanpan characteristicsandriskfactorsofmyocardialinjuryaftertraumatichemorrhagicshock
AT xuehaiyan characteristicsandriskfactorsofmyocardialinjuryaftertraumatichemorrhagicshock
AT wangtianbing characteristicsandriskfactorsofmyocardialinjuryaftertraumatichemorrhagicshock
AT zhufengxue characteristicsandriskfactorsofmyocardialinjuryaftertraumatichemorrhagicshock