Cargando…

Technical Aspects and Development of Transcatheter Aortic Valve Implantation

Aortic stenosis is the most common valve disease requiring surgery or percutaneous treatment. Since the first-in-man implantation in 2002 we have witnessed incredible progress in transcatheter aortic valve implantation (TAVI). In this article, we review the technical aspects of TAVI development with...

Descripción completa

Detalles Bibliográficos
Autores principales: Steblovnik, Klemen, Bunc, Matjaz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409777/
https://www.ncbi.nlm.nih.gov/pubmed/36005446
http://dx.doi.org/10.3390/jcdd9080282
Descripción
Sumario:Aortic stenosis is the most common valve disease requiring surgery or percutaneous treatment. Since the first-in-man implantation in 2002 we have witnessed incredible progress in transcatheter aortic valve implantation (TAVI). In this article, we review the technical aspects of TAVI development with a look at the future. Durability, low thrombogenicity, good hydrodynamics, biocompatibility, low catheter profile, and deployment stability are the attributes of an ideal TAVI device. Two main design types exist—balloon-expandable and self-expanding prostheses. Balloon-expandable prostheses use a cobalt-chromium alloy frame providing high radial strength and radiopacity, while the self-expanding prostheses use a nickel-titanium (Nitinol) alloy frame, which expands to its original shape once unsheathed and heated to the body temperature. The valve is sewn onto the frame and consists of the porcine or bovine pericardium, which is specially treated to prevent calcinations and prolong durability. The lower part of the frame can be covered by polyethylene terephthalate fabric or a pericardial skirt, providing better sealing between the frame and aortic annulus. The main future challenges lie in achieving lower rates of paravalvular leaks and new pacemaker implantations following the procedure, lower delivery system profiles, more precise positioning, longer durability, and a good hemodynamic profile. Patient-specific design and the use of autologous tissue might solve these issues.