Cargando…
Robot-Assisted Radiofrequency Ablation Combined with Thermodynamic Simulation for Epilepsy Reoperations
Repeat craniotomies to treat recurrent seizures may be difficult, and minimally invasive radiofrequency ablation is an alternative therapy. On the basis of this procedure, we aimed to develop a more reliable methodology which is helpful for institutions where real-time image monitoring or electrophy...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409811/ https://www.ncbi.nlm.nih.gov/pubmed/36013044 http://dx.doi.org/10.3390/jcm11164804 |
_version_ | 1784774942177361920 |
---|---|
author | Wang, Yu-Chi Cheng, Mei-Yun Hung, Po-Cheng Kuo, Cheng-Yen Hsieh, Hsiang-Yao Lin, Kuang-Lin Tu, Po-Hsun Wu, Chieh-Tsai Hsu, Peng-Wei Wei, Kuo-Chen Chuang, Chi-Cheng |
author_facet | Wang, Yu-Chi Cheng, Mei-Yun Hung, Po-Cheng Kuo, Cheng-Yen Hsieh, Hsiang-Yao Lin, Kuang-Lin Tu, Po-Hsun Wu, Chieh-Tsai Hsu, Peng-Wei Wei, Kuo-Chen Chuang, Chi-Cheng |
author_sort | Wang, Yu-Chi |
collection | PubMed |
description | Repeat craniotomies to treat recurrent seizures may be difficult, and minimally invasive radiofrequency ablation is an alternative therapy. On the basis of this procedure, we aimed to develop a more reliable methodology which is helpful for institutions where real-time image monitoring or electrophysiologic guidance during ablation are not available. We used simulation combined with a robot-assisted radiofrequency ablation (S-RARFA) protocol to plan and execute brain epileptic tissue lesioning. Trajectories of electrodes were planned on the robot system, and time-dependent thermodynamics was simulated with radiofrequency parameters. Thermal gradient and margin were displayed on a computer to calculate ablation volume with a mathematic equation. Actual volume was measured on images after the ablation. This small series included one pediatric and two adult patients. The remnant hippocampus, corpus callosum, and irritative zone around arteriovenous malformation nidus were all treated with S-RARFA. The mean error percentage of the volume ablated between preoperative simulation and postoperative measurement was 2.4 ± 0.7%. No complications or newly developed neurologic deficits presented postoperatively, and the patients had little postoperative pain and short hospital stays. In this pilot study, we preliminarily verified the feasibility and safety of this novel protocol. As an alternative to traditional surgeries or real-time monitoring, S-RARFA served as successful seizure reoperation with high accuracy, minimal collateral damage, and good seizure control. |
format | Online Article Text |
id | pubmed-9409811 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94098112022-08-26 Robot-Assisted Radiofrequency Ablation Combined with Thermodynamic Simulation for Epilepsy Reoperations Wang, Yu-Chi Cheng, Mei-Yun Hung, Po-Cheng Kuo, Cheng-Yen Hsieh, Hsiang-Yao Lin, Kuang-Lin Tu, Po-Hsun Wu, Chieh-Tsai Hsu, Peng-Wei Wei, Kuo-Chen Chuang, Chi-Cheng J Clin Med Communication Repeat craniotomies to treat recurrent seizures may be difficult, and minimally invasive radiofrequency ablation is an alternative therapy. On the basis of this procedure, we aimed to develop a more reliable methodology which is helpful for institutions where real-time image monitoring or electrophysiologic guidance during ablation are not available. We used simulation combined with a robot-assisted radiofrequency ablation (S-RARFA) protocol to plan and execute brain epileptic tissue lesioning. Trajectories of electrodes were planned on the robot system, and time-dependent thermodynamics was simulated with radiofrequency parameters. Thermal gradient and margin were displayed on a computer to calculate ablation volume with a mathematic equation. Actual volume was measured on images after the ablation. This small series included one pediatric and two adult patients. The remnant hippocampus, corpus callosum, and irritative zone around arteriovenous malformation nidus were all treated with S-RARFA. The mean error percentage of the volume ablated between preoperative simulation and postoperative measurement was 2.4 ± 0.7%. No complications or newly developed neurologic deficits presented postoperatively, and the patients had little postoperative pain and short hospital stays. In this pilot study, we preliminarily verified the feasibility and safety of this novel protocol. As an alternative to traditional surgeries or real-time monitoring, S-RARFA served as successful seizure reoperation with high accuracy, minimal collateral damage, and good seizure control. MDPI 2022-08-17 /pmc/articles/PMC9409811/ /pubmed/36013044 http://dx.doi.org/10.3390/jcm11164804 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Wang, Yu-Chi Cheng, Mei-Yun Hung, Po-Cheng Kuo, Cheng-Yen Hsieh, Hsiang-Yao Lin, Kuang-Lin Tu, Po-Hsun Wu, Chieh-Tsai Hsu, Peng-Wei Wei, Kuo-Chen Chuang, Chi-Cheng Robot-Assisted Radiofrequency Ablation Combined with Thermodynamic Simulation for Epilepsy Reoperations |
title | Robot-Assisted Radiofrequency Ablation Combined with Thermodynamic Simulation for Epilepsy Reoperations |
title_full | Robot-Assisted Radiofrequency Ablation Combined with Thermodynamic Simulation for Epilepsy Reoperations |
title_fullStr | Robot-Assisted Radiofrequency Ablation Combined with Thermodynamic Simulation for Epilepsy Reoperations |
title_full_unstemmed | Robot-Assisted Radiofrequency Ablation Combined with Thermodynamic Simulation for Epilepsy Reoperations |
title_short | Robot-Assisted Radiofrequency Ablation Combined with Thermodynamic Simulation for Epilepsy Reoperations |
title_sort | robot-assisted radiofrequency ablation combined with thermodynamic simulation for epilepsy reoperations |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409811/ https://www.ncbi.nlm.nih.gov/pubmed/36013044 http://dx.doi.org/10.3390/jcm11164804 |
work_keys_str_mv | AT wangyuchi robotassistedradiofrequencyablationcombinedwiththermodynamicsimulationforepilepsyreoperations AT chengmeiyun robotassistedradiofrequencyablationcombinedwiththermodynamicsimulationforepilepsyreoperations AT hungpocheng robotassistedradiofrequencyablationcombinedwiththermodynamicsimulationforepilepsyreoperations AT kuochengyen robotassistedradiofrequencyablationcombinedwiththermodynamicsimulationforepilepsyreoperations AT hsiehhsiangyao robotassistedradiofrequencyablationcombinedwiththermodynamicsimulationforepilepsyreoperations AT linkuanglin robotassistedradiofrequencyablationcombinedwiththermodynamicsimulationforepilepsyreoperations AT tupohsun robotassistedradiofrequencyablationcombinedwiththermodynamicsimulationforepilepsyreoperations AT wuchiehtsai robotassistedradiofrequencyablationcombinedwiththermodynamicsimulationforepilepsyreoperations AT hsupengwei robotassistedradiofrequencyablationcombinedwiththermodynamicsimulationforepilepsyreoperations AT weikuochen robotassistedradiofrequencyablationcombinedwiththermodynamicsimulationforepilepsyreoperations AT chuangchicheng robotassistedradiofrequencyablationcombinedwiththermodynamicsimulationforepilepsyreoperations |