Cargando…
Framework for Testing Robustness of Machine Learning-Based Classifiers
There has been a rapid increase in the number of artificial intelligence (AI)/machine learning (ML)-based biomarker diagnostic classifiers in recent years. However, relatively little work has focused on assessing the robustness of these biomarkers, i.e., investigating the uncertainty of the AI/ML mo...
Autores principales: | Chuah, Joshua, Kruger, Uwe, Wang, Ge, Yan, Pingkun, Hahn, Juergen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409965/ https://www.ncbi.nlm.nih.gov/pubmed/36013263 http://dx.doi.org/10.3390/jpm12081314 |
Ejemplares similares
-
An integrative machine learning framework for classifying SEER breast cancer
por: Manikandan, P., et al.
Publicado: (2023) -
Machine Learning in Medical Imaging
por: Suzuki, Kenji, et al.
Publicado: (2012) -
A machine learning based framework to identify and classify long terminal repeat retrotransposons
por: Schietgat, Leander, et al.
Publicado: (2018) -
An Iterative Framework for EEG-based Image Search: Robust Retrieval with Weak Classifiers
por: Ušćumlić, Marija, et al.
Publicado: (2013) -
Robust Framework to Combine Diverse Classifiers Assigning Distributed Confidence to Individual Classifiers at Class Level
por: Khalid, Shehzad, et al.
Publicado: (2014)