Cargando…
Unsupervised Domain Adaptation for Vertebrae Detection and Identification in 3D CT Volumes Using a Domain Sanity Loss
A variety of medical computer vision applications analyze 2D slices of computed tomography (CT) scans, whereas axial slices from the body trunk region are usually identified based on their relative position to the spine. A limitation of such systems is that either the correct slices must be extracte...
Autores principales: | Sager, Pascal, Salzmann, Sebastian, Burn, Felice, Stadelmann, Thilo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410021/ https://www.ncbi.nlm.nih.gov/pubmed/36005465 http://dx.doi.org/10.3390/jimaging8080222 |
Ejemplares similares
-
Unsupervised domain adaptation based COVID-19 CT infection segmentation network
por: Chen, Han, et al.
Publicado: (2021) -
BinSanity: unsupervised clustering of environmental microbial assemblies using coverage and affinity propagation
por: Graham, Elaina D., et al.
Publicado: (2017) -
What Is Sanity?
por: Groff, Alice
Publicado: (1913) -
Medical Sanity
Publicado: (1891) -
Sanity and Insanity
Publicado: (1891)