Cargando…
Prediction of Mortality after Burn Surgery in Critically Ill Burn Patients Using Machine Learning Models
Severe burns may lead to a series of pathophysiological processes that result in death. Machine learning models that demonstrate prognostic performance can be used to build analytical models to predict postoperative mortality. This study aimed to identify machine learning models with the best diagno...
Autores principales: | Park, Ji Hyun, Cho, Yongwon, Shin, Donghyeok, Choi, Seong-Soo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410169/ https://www.ncbi.nlm.nih.gov/pubmed/36013242 http://dx.doi.org/10.3390/jpm12081293 |
Ejemplares similares
-
Long Term Mortality in Critically Ill Burn Survivors
por: Nitzschke, SL, et al.
Publicado: (2015) -
Feasibility of using red cell distribution width for prediction of postoperative mortality in severe burn patients: an association with acute kidney injury after surgery
por: Park, Ji Hyun, et al.
Publicado: (2023) -
The effect of well-known burn-related features on machine learning algorithms in burn patients’ mortality prediction
por: Yazıcı, Hilmi, et al.
Publicado: (2023) -
Rectal necrosis in the setting of critical illness and burn
por: Mouradian, Gregory P., et al.
Publicado: (2023) -
Machine learning for prediction of delirium in patients with extensive burns after surgery
por: Ren, Yujie, et al.
Publicado: (2023)