Cargando…
Development and Validation of the Predictive Model for the Differentiation between Vestibular Migraine and Meniere’s Disease
(1) Background: Vestibular migraine (VM) and Meniere’s disease (MD) share multiple features in terms of clinical presentations and auditory-vestibular dysfunctions, e.g., vertigo, hearing loss, and headache. Therefore, differentiation between VM and MD is of great significance. (2) Methods: We retro...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410183/ https://www.ncbi.nlm.nih.gov/pubmed/36012984 http://dx.doi.org/10.3390/jcm11164745 |
_version_ | 1784775032606556160 |
---|---|
author | Liu, Dan Guo, Zhaoqi Wang, Jun Tian, E Chen, Jingyu Zhou, Liuqing Kong, Weijia Zhang, Sulin |
author_facet | Liu, Dan Guo, Zhaoqi Wang, Jun Tian, E Chen, Jingyu Zhou, Liuqing Kong, Weijia Zhang, Sulin |
author_sort | Liu, Dan |
collection | PubMed |
description | (1) Background: Vestibular migraine (VM) and Meniere’s disease (MD) share multiple features in terms of clinical presentations and auditory-vestibular dysfunctions, e.g., vertigo, hearing loss, and headache. Therefore, differentiation between VM and MD is of great significance. (2) Methods: We retrospectively analyzed the medical records of 110 patients with VM and 110 patients with MD. We at first established a regression equation by using logistic regression analysis. Furthermore, sensitivity, specificity, accuracy, positive predicted value (PV), and negative PV of screened parameters were assessed and intuitively displayed by receiver operating characteristic curve (ROC curve). Then, two visualization tools, i.e., nomograph and applet, were established for convenience of clinicians. Furthermore, other patients with VM or MD were recruited to validate the power of the equation by ROC curve and the Gruppo Italiano per la Valutazione degli Interventi in Terapia Intensiva (GiViTI) calibration belt. (3) Results: The clinical manifestations and auditory-vestibular functions could help differentiate VM from MD, including attack frequency (X5), phonophobia (X13), electrocochleogram (ECochG) (X18), head-shaking test (HST) (X23), ocular vestibular evoked myogenic potential (o-VEMP) (X27), and horizontal gain of vestibular autorotation test (VAT) (X30). On the basis of statistically significant parameters screened by Chi-square test and multivariable double logistic regression analysis, we established a regression equation: P = 1/[1 + e(−(−2.269) (× X5 − 2.395) (× X13 + 2.141) (× X18 + 3.949 × X23 + 2.798) (× X27 − 4.275) (× X30(1) − 5.811) (× X30(2) + 0.873))] (P, predictive value; e, natural logarithm). Nomographs and applets were used to visualize our result. After validation, the prediction model showed good discriminative power and calibrating power. (4) Conclusions: Our study suggested that a diagnostic algorithm based on available clinical features and an auditory-vestibular function regression equation is clinically effective and feasible as a differentiating tool and could improve the differential diagnosis between VM and MD. |
format | Online Article Text |
id | pubmed-9410183 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94101832022-08-26 Development and Validation of the Predictive Model for the Differentiation between Vestibular Migraine and Meniere’s Disease Liu, Dan Guo, Zhaoqi Wang, Jun Tian, E Chen, Jingyu Zhou, Liuqing Kong, Weijia Zhang, Sulin J Clin Med Article (1) Background: Vestibular migraine (VM) and Meniere’s disease (MD) share multiple features in terms of clinical presentations and auditory-vestibular dysfunctions, e.g., vertigo, hearing loss, and headache. Therefore, differentiation between VM and MD is of great significance. (2) Methods: We retrospectively analyzed the medical records of 110 patients with VM and 110 patients with MD. We at first established a regression equation by using logistic regression analysis. Furthermore, sensitivity, specificity, accuracy, positive predicted value (PV), and negative PV of screened parameters were assessed and intuitively displayed by receiver operating characteristic curve (ROC curve). Then, two visualization tools, i.e., nomograph and applet, were established for convenience of clinicians. Furthermore, other patients with VM or MD were recruited to validate the power of the equation by ROC curve and the Gruppo Italiano per la Valutazione degli Interventi in Terapia Intensiva (GiViTI) calibration belt. (3) Results: The clinical manifestations and auditory-vestibular functions could help differentiate VM from MD, including attack frequency (X5), phonophobia (X13), electrocochleogram (ECochG) (X18), head-shaking test (HST) (X23), ocular vestibular evoked myogenic potential (o-VEMP) (X27), and horizontal gain of vestibular autorotation test (VAT) (X30). On the basis of statistically significant parameters screened by Chi-square test and multivariable double logistic regression analysis, we established a regression equation: P = 1/[1 + e(−(−2.269) (× X5 − 2.395) (× X13 + 2.141) (× X18 + 3.949 × X23 + 2.798) (× X27 − 4.275) (× X30(1) − 5.811) (× X30(2) + 0.873))] (P, predictive value; e, natural logarithm). Nomographs and applets were used to visualize our result. After validation, the prediction model showed good discriminative power and calibrating power. (4) Conclusions: Our study suggested that a diagnostic algorithm based on available clinical features and an auditory-vestibular function regression equation is clinically effective and feasible as a differentiating tool and could improve the differential diagnosis between VM and MD. MDPI 2022-08-14 /pmc/articles/PMC9410183/ /pubmed/36012984 http://dx.doi.org/10.3390/jcm11164745 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Dan Guo, Zhaoqi Wang, Jun Tian, E Chen, Jingyu Zhou, Liuqing Kong, Weijia Zhang, Sulin Development and Validation of the Predictive Model for the Differentiation between Vestibular Migraine and Meniere’s Disease |
title | Development and Validation of the Predictive Model for the Differentiation between Vestibular Migraine and Meniere’s Disease |
title_full | Development and Validation of the Predictive Model for the Differentiation between Vestibular Migraine and Meniere’s Disease |
title_fullStr | Development and Validation of the Predictive Model for the Differentiation between Vestibular Migraine and Meniere’s Disease |
title_full_unstemmed | Development and Validation of the Predictive Model for the Differentiation between Vestibular Migraine and Meniere’s Disease |
title_short | Development and Validation of the Predictive Model for the Differentiation between Vestibular Migraine and Meniere’s Disease |
title_sort | development and validation of the predictive model for the differentiation between vestibular migraine and meniere’s disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410183/ https://www.ncbi.nlm.nih.gov/pubmed/36012984 http://dx.doi.org/10.3390/jcm11164745 |
work_keys_str_mv | AT liudan developmentandvalidationofthepredictivemodelforthedifferentiationbetweenvestibularmigraineandmenieresdisease AT guozhaoqi developmentandvalidationofthepredictivemodelforthedifferentiationbetweenvestibularmigraineandmenieresdisease AT wangjun developmentandvalidationofthepredictivemodelforthedifferentiationbetweenvestibularmigraineandmenieresdisease AT tiane developmentandvalidationofthepredictivemodelforthedifferentiationbetweenvestibularmigraineandmenieresdisease AT chenjingyu developmentandvalidationofthepredictivemodelforthedifferentiationbetweenvestibularmigraineandmenieresdisease AT zhouliuqing developmentandvalidationofthepredictivemodelforthedifferentiationbetweenvestibularmigraineandmenieresdisease AT kongweijia developmentandvalidationofthepredictivemodelforthedifferentiationbetweenvestibularmigraineandmenieresdisease AT zhangsulin developmentandvalidationofthepredictivemodelforthedifferentiationbetweenvestibularmigraineandmenieresdisease |