Cargando…
matRadiomics: A Novel and Complete Radiomics Framework, from Image Visualization to Predictive Model
Radiomics aims to support clinical decisions through its workflow, which is divided into: (i) target identification and segmentation, (ii) feature extraction, (iii) feature selection, and (iv) model fitting. Many radiomics tools were developed to fulfill the steps mentioned above. However, to date,...
Autores principales: | Pasini, Giovanni, Bini, Fabiano, Russo, Giorgio, Comelli, Albert, Marinozzi, Franco, Stefano, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410206/ https://www.ncbi.nlm.nih.gov/pubmed/36005464 http://dx.doi.org/10.3390/jimaging8080221 |
Ejemplares similares
-
Phenotyping the Histopathological Subtypes of Non-Small-Cell Lung Carcinoma: How Beneficial Is Radiomics?
por: Pasini, Giovanni, et al.
Publicado: (2023) -
Lung Segmentation on High-Resolution Computerized Tomography Images Using Deep Learning: A Preliminary Step for Radiomics Studies
por: Comelli, Albert, et al.
Publicado: (2020) -
A preliminary PET radiomics study of brain metastases using a fully automatic segmentation method
por: Stefano, Alessandro, et al.
Publicado: (2020) -
Performance of Radiomics Features in the Quantification of Idiopathic Pulmonary Fibrosis from HRCT
por: Stefano, Alessandro, et al.
Publicado: (2020) -
Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection
por: Scavuzzo, Anna, et al.
Publicado: (2023)