Cargando…

Single Channel Image Enhancement (SCIE) of White Blood Cells Based on Virtual Hexagonal Filter (VHF) Designed over Square Trellis

White blood cells (WBCs) are the important constituent of a blood cell. These blood cells are responsible for defending the body against infections. Abnormalities identified in WBC smears lead to the diagnosis of disease types such as leukocytosis, hepatitis, and immune system disorders. Digital ima...

Descripción completa

Detalles Bibliográficos
Autores principales: Rasheed, Shahid, Raza, Mudassar, Sharif, Muhammad, Kadry, Seifedine, Alharbi, Abdullah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410214/
https://www.ncbi.nlm.nih.gov/pubmed/36013181
http://dx.doi.org/10.3390/jpm12081232
Descripción
Sumario:White blood cells (WBCs) are the important constituent of a blood cell. These blood cells are responsible for defending the body against infections. Abnormalities identified in WBC smears lead to the diagnosis of disease types such as leukocytosis, hepatitis, and immune system disorders. Digital image analysis for infection detection at an early stage can help fast and precise diagnosis, as compared to manual inspection. Sometimes, acquired blood cell smear images from an L2-type microscope are of very low quality. The manual handling, haziness, and dark areas of the image become problematic for an efficient and accurate diagnosis. Therefore, WBC image enhancement needs attention for an effective diagnosis of the disease. This paper proposed a novel virtual hexagonal trellis (VHT)-based image filtering method for WBC image enhancement and contrast adjustment. In this method, a filter named the virtual hexagonal filter (VHF), of size 3 × 3, and based on a hexagonal structure, is formulated by using the concept of the interpolation of real and square grid pixels. This filter is convolved with WBC ALL-IBD images for enhancement and contrast adjustment. The proposed filter improves the results both visually and statically. A comparison with existing image enhancement approaches proves the validity of the proposed work.