Cargando…
Ground penetrating radar observations of subsurface structures in the floor of Jezero crater, Mars
The Radar Imager for Mars Subsurface Experiment instrument has conducted the first rover-mounted ground-penetrating radar survey of the Martian subsurface. A continuous radar image acquired over the Perseverance rover’s initial ~3-kilometer traverse reveals electromagnetic properties and bedrock str...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410267/ https://www.ncbi.nlm.nih.gov/pubmed/36007008 http://dx.doi.org/10.1126/sciadv.abp8564 |
Sumario: | The Radar Imager for Mars Subsurface Experiment instrument has conducted the first rover-mounted ground-penetrating radar survey of the Martian subsurface. A continuous radar image acquired over the Perseverance rover’s initial ~3-kilometer traverse reveals electromagnetic properties and bedrock stratigraphy of the Jezero crater floor to depths of ~15 meters below the surface. The radar image reveals the presence of ubiquitous strongly reflecting layered sequences that dip downward at angles of up to 15 degrees from horizontal in directions normal to the curvilinear boundary of and away from the exposed section of the Séitah formation. The observed slopes, thicknesses, and internal morphology of the inclined stratigraphic sections can be interpreted either as magmatic layering formed in a differentiated igneous body or as sedimentary layering commonly formed in aqueous environments on Earth. The discovery of buried structures on the Jezero crater floor is potentially compatible with a history of igneous activity and a history of multiple aqueous episodes. |
---|