Cargando…
Deep transfer learning with multimodal embedding to tackle cold-start and sparsity issues in recommendation system
Recommender systems (RSs) have become increasingly vital in the modern information era and connected economy. They play a key role in business operations by generating personalized suggestions and minimizing information overload. However, the performance of traditional RSs is limited by data sparsen...
Autores principales: | Jafri, Syed Irteza Hussain, Ghazali, Rozaida, Javid, Irfan, Mahmood, Zahid, Hassan, Abdullahi Abdi Abubakar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410545/ https://www.ncbi.nlm.nih.gov/pubmed/36007091 http://dx.doi.org/10.1371/journal.pone.0273486 |
Ejemplares similares
-
Study on the Pakistan stock market using a new stock crisis prediction method
por: Javid, Irfan, et al.
Publicado: (2022) -
Promoting Cold-Start Items in Recommender Systems
por: Liu, Jin-Hu, et al.
Publicado: (2014) -
EEG Feature Selection via Stacked Deep Embedded Regression With Joint Sparsity
por: Jiang, Kui, et al.
Publicado: (2020) -
A constrained singular value decomposition method that integrates sparsity and orthogonality
por: Guillemot, Vincent, et al.
Publicado: (2019) -
Sparsity: Graphs, Structures, and Algorithms
por: Nešetril, Jaroslav, et al.
Publicado: (2012)